

Cynthia Vodopivec Dynegy Zimmer, LLC Luminant 6555 Sierra Dr. Irving, TX 75039

November 25, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Zimmer Power Station Revised Alternative Closure Demonstration

Dear Administrator Wheeler:

Dynegy Zimmer, LLC (Dynegy) submits this revised request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(1) for the three surface impoundments (Coal Pile Runoff, Gypsum Recycle Pond, and D Basin) located at the Zimmer Power Station near Moscow, Ohio. Dynegy's request seeks an extension pursuant to 40 C.F.R. § 257.103(f)(1) to allow the three impoundments to continue to receive CCR and non-CCR wastestreams after April 11, 2021, in order to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin. As noted in our submission, the Coal Pile Runoff Pond and Gypsum Recycle Pond are eligible unlined CCR surface impoundments as defined under 40 C.F.R. § 257.53.

The enclosed demonstration prepared by Burns & McDonnell replaces the demonstration that was previously submitted by Dynegy to EPA on October 30, 2020. This demonstration addresses all of the criteria in 40 C.F.R. § 257.103(f)(1)(i)-(iii) and contains the documentation required by 40 C.F.R. § 257.103(f)(1)(iv). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. The demonstration is also available on Dynegy's publicly available website: https://www.luminant.com/ccr/

Sincerely,

Cynthin E Ubdy

Cynthia Vodopivec VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Dynegy Zimmer, LLC

William H. Zimmer Power Station Project No. 122702

> Revision 2 November 25, 2020

Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Prepared for

Dynegy Zimmer, LLC William H. Zimmer Power Station Project No. 122702

Moscow, Ohio

Revision 2 November 25, 2020

Prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Dynegy Zimmer, LLC Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Report Index

<u>Chapter</u> <u>Number</u>	Chapter Title	<u>Number</u> of Pages
	Executive Summary	1
1.0	Introduction	3
2.0	Workplan	20
4.0	Conclusion	1
Appendix A	Site Plans and Water Balance Diagram	4
Appendix B	Schedule	2

Certification

I hereby certify, as a Professional Engineer in the state of Ohio, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Dynegy Zimmer, LLC or others without specific verification or adaptation by the Engineer.

Matthew D. Bleything, P.E. -Ohio License No. 82440

Date:

NT 1.

01

TABLE OF CONTENTS

Page No.

EXEC	UTIVE	SUMMARY	1
1.0	INTRO	DDUCTION	1-1
2.0	-	KPLAN	2-1
	2.1	No Alternative Disposal Capacity and Approach to Obtain Alternative	0.1
		Capacity - § 257.103(f)(1)(iv)(A)(1) 2.1.1 CCR Wastestreams	
		2.1.1 CCK wastestreams 2.1.2 Non-CCR Wastestreams	
		2.1.2 Non-CCK wastestreams2.1.3 Site-Specific Conditions Supporting Alternative Capacity	2-4
		Approach – $\$ 257.103(f)(1)(iv)(A)(1)(i)$	2_7
		2.1.5 Options Considered Both On and Off-Site to Obtain Alternative	2-1
		Capacity	2-8
		2.1.6 Approach to Obtain Alternative Capacity	
		2.1.7 Technical Infeasibility of Obtaining Alternative Capacity	
		2.1.8 Justification for Time Needed to Complete Development of	
		Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)	. 2-14
	2.2	Detailed Schedule to Obtain Alternative Disposal Capacity -	
		§ 257.103(f)(1)(iv)(A)(2)	.2-16
	2.3	Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)	.2-16
	2.4	Progress Towards Obtaining Alternative Capacity -	
		§ 257.103(f)(1)(iv)(A)(4)	. 2-19
3.0	DOCU	JMENTATION AND CERTIFICATION OF COMPLIANCE	3-1
	3.1	Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)	3-1
	3.2	Visual Representation of Hydrogeologic Information -	
		§ 257.103(f)(1)(iv)(B)(2)	
	3.3	Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)	
	3.4	Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)	
	3.5	Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)	
	3.6	Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)	3-3
	3.7	Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)	3-3
	3.8	Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)	3-3
4.0	CONC	CLUSION	4-1
APPE		A – SITE PLANS AND WATER BALANCE DIAGRAM	

APPENDIX B – SCHEDULE

APPENDIX C – COMPLIANCE DOCUMENTS

LIST OF TABLES

Page No.

Table 2-1: Zimmer CCR Surface Impoundment Summary	
Table 2-2: Zimmer CCR Wastestreams	
Table 2-3: Zimmer Gypsum Recycle Pond Non-CCR Wastestreams	
Table 2-4: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams	
Table 2-5: Alternatives for Disposal Capacity	
Table 2-6: Retrofit Project Progress Milestones	

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
ASD	Alternate Source Demonstrations
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
СҮ	Cubic yards
Dynegy	Dynegy Zimmer, LLC
ELG	Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category
EPA	Environmental Protection Agency
FGD	Flue Gas Desulfurization
GCL	Geosynthetic Clay Liner
GWPS	Groundwater Protection Standards
HDPE	High Density Polyethylene
MGD	Million gallons per day
NPDES	National Pollutant Discharge Elimination System
POTW	Publicly Owned Treatment Works
PSD	Prevention of Significant Deterioration
RCRA	Resource Conservation and Recovery Act
SAP	Sampling and Analysis Plan
SSI(s)	Statistically Significant Increases
SSL(s)	Statistically Significant Levels
SWPPP	Stormwater Pollution Prevention Plan
Zimmer	William H. Zimmer Power Station

EXECUTIVE SUMMARY

Dynegy Zimmer LLC (Dynegy) submits this request to the U.S. Environmental Protection Agency (EPA) for approval of a site-specific alternative deadline to initiate retrofit or closure pursuant to 40 C.F.R. § 257.103(f)(1) for the three CCR surface impoundments located at the William H. Zimmer Power Station (Zimmer), including the Gypsum Recycle Pond, the Coal Pile Runoff Pond, and D Basin.

Zimmer is a single unit 1,450-megawatt coal-fired facility located in Moscow, Ohio. Zimmer utilizes the Gypsum Recycle Pond to collect FGD blowdown and non-CCR wastestreams from multiple sources prior to pumping this water to the site's Mercury Effluent Treatment System, where chemicals are injected to promote the settling of solids and key constituents in the downstream Coal Pile Runoff Pond. The D Basin is periodically used to receive dredging flows, including CCR and non-CCR material from other impoundments onsite. In order to comply with the requirements of the CCR Rule, Dynegy has elected to install an agitated tank and pumps to receive the CCR wastestreams currently routed to the Gypsum Recycle Pond and bypass the pond by diverting these CCR wastestreams directly to the Mercury Effluent Treatment System. Following this diversion, the Gypsum Recycle Pond will be closed by removal of CCR materials and repurposed as a non-CCR impoundment. The Mercury Effluent Treatment System discharge will be temporarily diverted to the D Basin while the Coal Pile Runoff Pond is retrofitted with a CCR-compliant liner system. Once the Coal Pile Runoff Pond retrofit is completed, the flows will be returned to this impoundment and the D Basin will be removed from service and closure will be initiated. This work is forecasted to be completed by the requested site-specific alternative compliance deadline of October 20, 2021.

1

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled electric generating units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 *et seq.*).

On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to cease receipt of CCR and non-CCR waste and initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1), (b)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may seek and obtain an alternative closure deadline by demonstrating that there is currently no alternative capacity available on or off-site and that it is not technically feasible to complete the development of alternative capacity prior to April 11, 2021. 40 C.F.R. § 257.103(f)(1). To make this demonstration, the facility is required to provide detailed information regarding the process the facility is undertaking to develop the alternative capacity. 40 C.F.R. § 257.103(f)(1). Any extensions granted cannot extend past October 15, 2023, except an extension can be granted until October 15, 2024, if the impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined by the rule. 40 C.F.R. § 257.103(f)(1)(vi). Regardless of the maximum time allowed under the rule, EPA explains in the preamble to the Part A rule that each impoundment "must still cease receipt of waste as soon as feasible, and may only have the amount of time [the owner/operator] can demonstrate is genuinely necessary." 85 Fed. Reg. at 53,546.

This document serves as Dynegy's Demonstration for a site-specific alternative deadline to initiate retrofit or closure pursuant to 40 C.F.R. § 257.103(f)(1) for the CCR surface impoundments at Zimmer, located in Moscow, Ohio, which include the following:

- Gypsum Recycle Pond
- Coal Pile Runoff Pond
- D Basin

The Gypsum Recycle Pond and Coal Pile Runoff are "eligible unlined CCR surface impoundments" as defined under 40 C.F.R. § 257.53. To obtain an alternative closure deadline under 40 C.F.R. § 257.103(f)(1), a facility must meet the following three criteria:

1. § 257.103(f)(1)(i) - There is no alternative disposal capacity available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification;

- 2. § 257.103(f)(1)(ii) Each CCR and/or non-CCR wastestream must continue to be managed in that CCR surface impoundment because it was technically infeasible to complete the measures necessary to obtain alternative disposal capacity either on or off-site of the facility by April 11, 2021; and
- 3. § 257.103(f)(1)(iii) The facility is in compliance with all the requirements of the CCR Rule.

To demonstrate that the first two criteria above have been met, 40 C.F.R. § 257.103(f)(1)(iv)(A) requires

the owner or operator to submit a work plan that contains the following elements:

- A written narrative discussing the options considered both on and off-site to obtain alternative capacity for each CCR and/or non-CCR wastestream, the technical infeasibility of obtaining alternative capacity prior to April 11, 2021, and the option selected and justification for the alternative capacity selected. The narrative must also include all of the following:
 - An in-depth analysis of the site and any site-specific conditions that led to the decision to select the alternative capacity being developed;
 - An analysis of the adverse impact to plant operations if the CCR surface impoundment in question were to no longer be available for use; and
 - A detailed explanation and justification for the amount of time being requested and how it is the fastest technically feasible time to complete the development of the alternative capacity.
- A detailed schedule of the fastest technically feasible time to complete the measures necessary for alternate capacity to be available, including a visual timeline representation. The visual timeline must clearly show all of the following:
 - How each phase and the steps within that phase interact with or are dependent on each other and the other phases;
 - All of the steps and phases that can be completed concurrently;
 - The total time needed to obtain the alternative capacity and how long each phase and step within each phase will take; and
 - At a minimum, the following phases: engineering and design, contractor selection, equipment fabrication and delivery, construction, and start up and implementation.
- A narrative discussion of the schedule and visual timeline representation, which must discuss the following:
 - Why the length of time for each phase and step is needed and a discussion of the tasks that occur during the specific step;
 - Why each phase and step shown on the chart must happen in the order it is occurring;
 - The tasks that occur during each of the steps within the phase; and
 - Anticipated worker schedules.

• A narrative discussion of the progress the owner or operator has made to obtain alternative capacity for the CCR and/or non-CCR wastestreams. The narrative must discuss all the steps taken, starting from when the owner or operator initiated the design phase up to the steps occurring when the demonstration is being compiled. It must discuss where the facility currently is on the timeline and the efforts that are currently being undertaken to develop alternative capacity.

To demonstrate that the third criterion above has been met, 40 C.F.R. 257.103(f)(1)(iv)(B) requires the owner or operator to submit the following information:

- A certification signed by the owner or operator that the facility is in compliance with all of the requirements of 40 C.F.R. Part 257, Subpart D;
- Visual representation of hydrogeologic information at and around the CCR unit(s) that supports the design, construction and installation of the groundwater monitoring system. This includes all of the following:
 - Map(s) of groundwater monitoring well locations in relation to the CCR unit(s);
 - Well construction diagrams and drilling logs for all groundwater monitoring wells; and
 - o Maps that characterize the direction of groundwater flow accounting for seasonal variations.
- Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event;
- A description of site hydrogeology including stratigraphic cross-sections;
- Any corrective measures assessment conducted as required at § 257.96;
- Any progress reports on corrective action remedy selection and design and the report of final remedy selection required at § 257.97(a);
- The most recent structural stability assessment required at § 257.73(d); and
- The most recent safety factor assessment required at § 257.73(e).

2.0 WORKPLAN

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(i) and (ii) have been met, the following is a workplan, consisting of the elements required by § 257.103(f)(1)(iv)(A). Specifically, this workplan documents that there is no alternative capacity available on or off-site for each of the CCR and non-CCR wastestreams that Dynegy plans to continue to manage in the three surface impoundments and discusses the options considered for obtaining alternative disposal capacity. As discussed in more detail below, **Dynegy has elected to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin. The workplan provides a detailed schedule for the retrofit project, including a narrative description of the schedule and an update on the progress already made toward obtaining the alternative capacity. In addition, the narrative includes an analysis of the site-specific conditions that led to the decision to retrofit impoundments and an analysis of the adverse impact to plant operations if Dynegy were no longer able to use the CCR surface impoundments.**

2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1)

Dynegy owns and operates Zimmer, a 1,450-megawatt coal-fired facility located in Moscow, Ohio. Zimmer has three CCR surface impoundments (listed in Table 2-1) that receive both CCR and non-CCR wastestreams. The other impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, and specifically coal pile runoff. An aerial view of the Zimmer site and the CCR surface impoundments can be found on Figure 1 in Appendix A, and the impoundments are also shown on the site water balance diagram on Figure 2 in Appendix A. Note, the Gypsum Recycle Pond (also referred to as the Truck Wash Pond) is denoted as the FGD Runoff Pond on the water balance.

CCR Surface Impoundment Name	Alternate Designation (see Figure 2)	Year Placed in Service	Impoundment Size (acres) / Storage Volume (acre-feet)	Lined?	Meets Location Restrictions?	Groundwater Status	
Gypsum Recycle Pond	SPD-4 Pond-4 Truck Wash Pond	1995	0.6 / 4.5	Yes ¹	Yes	Assessment Monitoring was initiated in May 2018 and is	
Coal Pile Runoff Pond	SPD-3 Pond-3 Coal Pile Runoff Pond	1987	2.8 / 36.3	Yes ¹	Yes	ongoing. No exceedances of Appendix IV parameters have been identified;	
D Basin	SPD-5 Pond-5 D Basin Dredge Dewatering Basin	2003	6.1 / 46.6	No	No ²	therefore, an assessment of corrective measures is not required.	

¹Originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. This impoundment now qualifies as an eligible unlined CCR surface impoundment per § 257.53. ²Meets criteria for wetlands, fault areas, seismic impact zones, and unstable areas but not aquifer separation.

2.1.1 CCR Wastestreams

Dynegy evaluated each CCR wastestream placed in the Zimmer CCR surface impoundments. The existing site water balance is included in Appendix A of this demonstration (see Figure 2). The Zimmer fly ash, economizer ash, and gas recirculation ash systems are dry handled and disposed in the CCR landfill onsite. The bottom ash (and non-CCR pyrites) is sluiced to dewatering bins equipped with surge tanks and a recirculation system. After dewatering, the bottom ash is disposed in the CCR landfill onsite. For the reasons discussed below in Table 2-2, each of the following CCR wastestreams must continue to be placed in the CCR surface impoundments due to lack of alternative capacity both on and off-site.

CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes
FGD Wastewater	0.337	 The FGD system utilizes a series of thickeners with rakes and centrifuges to remove suspended solids and a magnesium recovery process to remove dissolved solids from the effluent. The Gypsum Recycle Pond receives centrate centrifuge effluent, FGD blowdown that is not recycled back to the scrubber, and mag thickener overflow (FGD wastewater). This pond effluent is forwarded to the Mercury Effluent Treatment System via the FGD area sump. Coal Pile Runoff Pond receives treated flow (including CCR solids) from the Mercury Effluent Treatment System. D Basin is used to dewater dredged CCR and non-CCR material from other ponds onsite (including Gypsum Recycle Pond and Coal Pile Runoff Pond). 	 The Gypsum Recycle Pond is integral to operation of the FGD and captures large portions of the wet-generated CCR solids from the centrate/mag thickener system overflows and various wash activities before having the water forwarded to the Mercury Effluent Treatment System. The Coal Pile Runoff Pond receives both coal fines from non-CCR wastestreams (specifically coal pile runoff) and the effluent from the Mercury Effluent Treatment System (including landfill leachate, FGD wastewater, and the CCR solids that settle out of the FGD wastewater). Based on the size of this impoundment, dredging (to D Basin) is required to remove CCR and non-CCR materials on a periodic basis to maintain the residence time and treatment capacity provided within the Coal Pile Runoff Pond.

Dynegy evaluated on-site, wet temporary storage options for the CCR wastestreams, in lieu of using the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin while permanent capacity is being developed. Based on our evaluation, we concluded the following:

• The FGD wastewater is currently comingled with non-CCR wastestreams in the Gypsum Recycle Pond and would require significant reconfiguration of piping and valves to segregate these flows and collect the FGD wastewater separately from the floor drains and trenches that collect wash water and other flows around the FGD areas (this segregation requires a bulk of the project schedule outlined later in this demonstration). Once isolated, this flow would need to be pumped to the Mercury Effluent Treatment System and then captured in another set of tanks for treatment to remove the solids. Dynegy estimates that approximately 65 frac tanks would be required to provide the necessary settling time, accounting for reduced settling capacity and reduced residence time due to solid accumulation. Frequent frac tank removal and replacement, due to solid build-up, would be required to maintain the settlement efficiency. Approximately one acre would be required to accommodate the installation of these frac tanks and allow for adequate space for frequent frac tank maintenance and replacement. Furthermore, environmental permitting would be required to install this temporary wet storage option including a general NPDES stormwater construction permit, a construction & operating permit, and a Stormwater Pollution Prevention Plan (SWPPP) at a minimum. The required reconfiguration, design, installation and associated environmental permitting of temporary wet storage would likely extend the overall compliance schedule. Based on the footprint and segregation of flows required and the potential for leaks from this system, Dynegy does not consider wet temporary storage of FGD wastewater to be technically feasible at Zimmer.

2.1.2 Non-CCR Wastestreams

Zimmer discharges non-contact cooling water, reclaim water, and cooling tower blowdown via Outfall 099, cooling tower overboard, sewage treatment plant, and south plant stormwater via Outfall 003, and sewage treatment flows and north plant stormwater via Outfall 004. The CCR surface impoundments, two other coal pile runoff ponds (A and B basins), a stormwater and river dredge pond (C Basin), and one low volume wastewater pond are used to manage all the remaining water process flows and stormwater on the plant site. These ponds are interconnected in series to allow for settling prior to overflowing to the Clear Water Pond for discharge to the Ohio River via Outfall 005. The existing site water balance is included in Appendix A of this demonstration (see Figure 2).

Dynegy evaluated each non-CCR wastestream placed in the Zimmer CCR surface impoundments. For the reasons discussed below in Table 2-3 and Table 2-4, each of the following non-CCR wastestreams must continue to be placed in the Gypsum Recycle Pond and Coal Pile Runoff Pond, respectively, due to lack of alternative capacity both on and off-site. The D Basin only receives wastestreams during dredging of other impoundments onsite.

Table 2-3: Zimmer Gypsum Recycle Pond Non-CCR Wastestreams
--

Non-CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes	
Stormwater runoff	Intermittent (0.76 estimated for 10-year 24-hour storm)	Stormwater runoff from the FGD pad mix stackout pile	These flows are intermittent and collected in the impoundment via gravity drainage, where they comingle with CCR wastestreams listed in Table 2-2. Dynegy will need to employ temporary	
Miscellaneous Process Wastewater	0.229	Includes wash water from the truck wash system and drainage from the FGD Waste Handling Building, Coal Conveyor 56E/W, and Fly Ash Silo (via the trench system)	diversion measures to pump this water to the FGD stabilization area sump while the Gypsum Recycle Pond is being closed by removal. Once the CCR wastestreams are modified to bypass the Gypsum Recycle Pond and it has been closed by removal of CCR solids, it will be repurposed as a non-CCR basin and will continue to receive these flows.	

Table 2-4: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams

Non-CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes		
Coal Pile Runoff from A and B Basins	Intermittent (2.117 estimated for 10-year 24- hour storm)	Flow is pumped from the Basins to the Coal Pile Runoff Pond	These flows will be temporarily rerouted to D Basin until the pond retrofit project is complete.		
Decant water and stormwater from C Basin	Intermittent (0.835 estimated for 10-year 24- hour storm)	which overflows to the Wastewater Pond	The D Basin effluent will need to be pumped to the Wastewater Pond. Rerouting flows will require installation of temporary piping.		
Decant water and stormwater from D Basin	0.09 (1.95 estimated for 10-year 24- hour storm)	Decant water flow is pumped from D Basin to the Coal Pile Runoff Pond during dredging operations and as needed due to stormwater	If the Coal Pile Runoff Pond were bypassed, the Wastewater Pond residence time would likely not provide adequate treatment to remove the coal fines and Zimmer would risk violating the discharge limits at Outfall 005.		
Landfill Leachate and Contact Stormwater	0.271 (0.967 estimated for 10-year 24- hour storm)	Routed through the Mercury Effluent Treatment System	The Mercury Effluent Treatment System discharge (including CCR and non-CCR wastestreams) will be redirected to the D-Basin through temporary piping during retrofit of the Coal Pile Runoff Pond.		

Dynegy did evaluate on-site, wet temporary storage options for each of the non-CCR wastestreams, in lieu of using the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin while permanent capacity is being developed. Based on our evaluation, we concluded the following for each non-CCR wastestream:

- Stormwater runoff; wash water; and miscellaneous process wastewaters routed to the Gypsum <u>Recycle Pond</u>: These non-CCR wastestreams are currently comingled with CCR wastestreams in the Gypsum Recycle Pond and would require significant reconfiguration of piping and valves to segregate these flows. Dynegy estimates that approximately 95 frac tanks would be required to provide the necessary settling time, accounting for reduced settling capacity and reduced residence time due to solid accumulation. Approximately 1.5 acres would be required to accommodate the installation of these frac tanks and allow for adequate space for frequent frac tank maintenance and replacement. Furthermore, environmental permitting would be required to install this temporary wet storage option including a general NPDES stormwater construction permit, a construction & operating permit, and a SWPPP at a minimum. The required reconfiguration, design, installation and associated environmental permitting of temporary wet storage would extend the overall compliance schedule. Based on the footprint and segregation of flows required and the potential for leaks from this system, Dynegy does not consider wet temporary storage for these wastestreams to be technically feasible at Zimmer.
- Coal pile runoff from A and B Basins, decant water and stormwater from C Basin, and decant water and stormwater from D Basin are pumped to the Coal Pile Runoff Pond: These flows are heavily dependent on rainfall rates, but the current site discharge permit requires treatment of these wastestreams up to the peak runoff from a 10-year 24-hour storm event. The current Coal Pile Runoff Pond was designed to provide this treatment using 11 million gallons of storage and the associated residence time for these flows, and this treatment must be completed prior to placing the flow in the Wastewater Pond onsite. Dynegy estimates that approximately 525 frac tanks would be required to replace the treatment capacity of the Coal Pile Runoff Pond and provide the necessary settling time. Approximately 8 acres would be required to accommodate the installation of these frac tanks and allow for adequate space for frequent frac tank maintenance and replacement. Furthermore, environmental permitting would be required to install this temporary wet storage option including a general NPDES stormwater construction permit, a construction & operating permit, and a SWPPP at a minimum. The required reconfiguration, design, installation and associated environmental permitting of temporary wet storage would extend the overall compliance schedule. Based on the footprint required and the

potential for leaks from this system, Dynegy does not consider wet temporary storage for these wastestreams to be technically feasible at Zimmer.

Landfill leachate and contact stormwater pumped to Mercury Effluent Treatment System/Coal <u>Pile Runoff Pond</u>: These non-CCR wastestreams are captured in a non-CCR impoundment before being comingled with CCR wastestreams in the Mercury Effluent Treatment System and discharged to the Coal Pile Runoff Pond. The CCR material settles out in the Coal Pile Runoff Pond before the treated water flows to the Wastewater Pond. An additional treatment system would be required if these flows were segregated and discharged directly to the Wastewater Pond in order to bypass the Coal Pile Runoff Pond. Furthermore, environmental permitting would be required to install this temporary treatment system including an NPDES permit modification (to segregate the streams at internal Outfall 626), a general NPDES stormwater construction permit, a construction & operating permit, and a SWPPP at a minimum. The required reconfiguration, design, installation and associated environmental permitting of temporary treatment would extend the overall compliance schedule. Based on the increased schedule associated with segregation of flows, new equipment lead times, and permitting, Dynegy has not elected to pursue segregated temporary treatment for these wastestreams at Zimmer.

2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(i)

As shown on Figure 3 in Appendix A, Zimmer is bounded by the Ohio River to the west, the village of Moscow to the south, the Ohio River Scenic Byway (US Highway 52) to the east, and residential properties to the north. As illustrated on Figure 3, Zimmer has significant real estate constraints in close proximity to the plant and the existing impoundments (which is already congested with critical infrastructure and floodplain areas). There is available land onsite at Zimmer (see Figure 4 for entire property boundary); however, this space is across US Highway 52 and in areas of rough terrain. Due to the relatively small size of the Zimmer impoundments, a retrofit of these facilities is estimated to occur much faster than the design, permitting, and construction timeline associated with new impoundments located across the highway. Further, the remaining impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, specifically coal pile runoff. Consequently, in order to continue to operate and generate electricity, Zimmer must continue to use the Coal Pile Runoff Pond and Gypsum Recycle Pond for treatment of both CCR and non-CCR wastestreams until the Coal Pile Runoff Pond can be retrofitted and Gypsum Recycle Pond inflows can be rerouted. The D Basin must

remain open to receive CCR wastestreams during these modifications and will be closed once these projects are completed.

2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained – § 257.103(f)(1)(iv)(A)(1)(ii)

Each CCR surface impoundment is essential to plant operations as noted in Table 2-2, Table 2-3, and Table 2-4. The CCR surface impoundments receive CCR flows and a portion of the non-CCR wastewater flows onsite. The other impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, and specifically coal pile runoff. If these impoundments were removed from service prior to the requested site-specific deadline to initiate closure, the plant would be forced to cease operation. Furthermore, many of the non-CCR wastestreams are sourced from storm events and would not be possible to cease routing to these impoundments before April 11, 2021, even if the plant were idled to develop alternative disposal capacity for these wastestreams.

Consequently, in order to continue to operate and generate electricity and meet the discharge permit requirements, Zimmer must continue to use the Gypsum Recycle Pond and Coal Pile Runoff Pond for treatment of both CCR and non-CCR wastestreams until the Coal Pile Runoff Pond can be retrofitted with a CCR-compliant liner system and new effluent tanks can be installed for storage and redirection of the Gypsum Recycle Pond CCR wastestreams. Zimmer must also continue to use the D Basin to receive intermittent CCR and non-CCR wastestreams until the necessary modifications can be completed for the other impoundments onsite.

2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity

As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). Based on the following evaluation, Dynegy agrees with EPA in this assessment and confirms that off-site disposal alternatives are not an option for wet-generated CCR and non-CCR wastestreams at Zimmer. Off-site disposal of these sluiced CCR and non-CCR wastestreams would require both on-site temporary storage (as previously discussed in both Section 2.1.1 and 2.1.2) and significant daily tanker truck traffic. The required daily tanker trucks for each of the CCR and non-CCR sluiced wastestreams are summarized as follows:

- <u>FGD Wastewater to Gypsum Recycle Pond (0.337 MGD)</u>: Approximately 45 daily trucks would be required, if a Publicly Owned Treatment Works (POTW) could be identified to receive it.
- <u>Stormwater runoff to Gypsum Recycle Pond (0-0.76 MGD)</u>: Approximately 100 daily trucks would be required during rain events.
- <u>Miscellaneous process wastewater to Gypsum Recycle Pond (0.229 MGD)</u>: Approximately 31 daily trucks would be required.
- <u>Stormwater runoff from A and B Basins; decant water and stormwater from C Basin; and decant</u> water and stormwater from D Basin directed to the Coal Pile Runoff Pond (0-4.902 MGD as <u>shown in Table 2-4):</u> Approximately 650 daily trucks would be required during rain events.
- Landfill leachate and contact stormwater directed to the Mercury Effluent Treatment System/Coal <u>Pile Runoff Pond (0.271-0.967 MGD):</u> Approximately 36 daily trucks would be required, increasing up to 130 daily trucks during rain events.

This tank traffic as well as the significant daily tanker truck volume for offsite disposal (total of 112 trucks per day during normal operations and over 950 trucks per day during rain events) would result in increased potential for safety and noise impacts and further increases in fugitive dust, greenhouse gas emissions and carbon footprint which may require a Prevention of Significant Deterioration (PSD) permit and modification under the Clean Air Act Permit Program if the calculated increases in emissions is over the PSD limits. This increased traffic during rain events is also difficult to plan for and reliably perform in this location, regardless of whether suitable disposal locations can be identified. Setting up contractual arrangements for a local POTW to accept the wastewater would prove to be difficult since they also have to meet NPDES discharge limits. Therefore, most POTW's have their own permitting process to allow industry to discharge to their facilities, and they may be required to modify their NPDES discharge permit adding time to the overall compliance schedule. The potential for leaks/spills from the tank system or transportation of the wastewater offsite does exist. Furthermore, and as previously discussed in Section 2.1.1 and 2.1.2, the temporary wet storage needed to accommodate off-site disposal would require reconfiguration, design, installation, and associated environmental permitting that would extend the overall compliance schedule. Consequently, there are no feasible offsite-disposal options for the wet-generated wastestreams at Zimmer.

The current non-CCR impoundments onsite cannot receive CCR materials and cannot provide adequate residence time to treat the non-CCR wastestreams during rain events if the CCR impoundments were removed from service. The only feasible onsite alternatives involve continued use of the CCR surface impoundments for treatment of the flows prior to discharge. The remaining options considered for alternative disposal capacity of the wastestreams currently routed to the CCR surface impoundments are

summarized in Table 2-5. Additional details on the CCR and non-CCR wastestreams included in this demonstration request are found in Table 2-2, Table 2-3, and Table 2-4, respectively.

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Zimmer?	Selected?	Dynegy Notes
Conversion to dry handling	33.8	Yes	No	The bottom ash and fly ash wastestreams are dry handled or high recycle rate systems compliant with EPA regulations and not currently routed to the unlined CCR surface impoundments onsite, thus this technology option would not address Zimmer's alternative capacity needs.
Non-CCR wastewater basin	23.5	Yes	No	A new non-CCR basin alone would not provide compliance due to the need to handle the FGD CCR wastestreams at the Zimmer site. Construction of a new non- CCR impoundment would take longer than the selected solution to retrofit the Coal Pile Runoff Pond and redirect the CCR wastestreams to bypass the Gypsum Recycle Pond.
Wastewater treatment facility	22.3	Yes	No	Construction of a new wastewater treatment facility would take longer than the selected solution to retrofit the Coal Pile Runoff Pond and redirect the CCR wastestreams to bypass the Gypsum Recycle Pond.
New CCR surface impoundment	31	No	No	Construction of a new CCR surface impoundment would take longer than the selected solution to retrofit the Coal Pile Runoff Pond and redirect the CCR wastestreams to bypass the Gypsum Recycle Pond.
Retrofit of a CCR surface impoundment	29.8	Yes	Yes	Dynegy plans to pursue this option for the Coal Pile Runoff Pond on a faster schedule than the average timeline identified by EPA.
Multiple technology system	39.1	Yes	Yes	In addition to retrofitting the Coal Pile Runoff Pond, Dynegy plans to reroute CCR flows away from the Gypsum Recycle Pond to a new collection tank. Once the Gypsum Recycle Pond is closed by removal, the pond will be repurposed as a non-CCR basin.

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Zimmer?	Selected?	Dynegy Notes
Temporary treatment Not system defined	No	No	The Coal Pile Runoff pond provides residence time for treatment of the surges from rain events with over eleven million gallons of storage. Dynegy has chosen to focus on implementing the necessary measures for the selected technologies described above rather than try to develop temporary solutions for treatment of the remaining CCR and/or non-CCR wastestreams.	
				Refer to Sections 2.1.1, 2.1.2, and 2.1.5 for further discussion on temporary wet storage options for both CCR and non-CCR wastestreams. Mobilizing a temporary clarifier system or other similar treatment systems would take longer than the remaining schedule to redirect the wastestreams and retrofit the ponds.

¹From Table 3. See 85 Fed. Reg. at 53,534.

2.1.6 Approach to Obtain Alternative Capacity

Dynegy installed monitoring wells in 2015 and performed background groundwater sampling between December of 2015 and July of 2017. During this time, several engineering firms assisted Dynegy in preparing the required CCR compliance documentation which Dynegy posted on its public CCR website. Key information is summarized in Table 2-1. The D Basin was certified as an unlined impoundment; however, the Coal Pile Runoff Pond and the Gypsum Recycle Pond were originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. Accordingly, pursuant to 40 C.F.R. § 257.101(a)(1), these three ponds are now required to cease receiving CCR and non-CCR flows by April 11, 2021 and either complete a retrofit or initiate closure by that date.

In February of 2020, Dynegy hired Burns & McDonnell to evaluate the impacts to the plant from both the proposed CCR Rule and proposed ELG Rule changes and provide potential compliance options. The potential options examined for CCR Rule compliance included the following:

• <u>Option A</u>: Retrofit Coal Pile Runoff Pond and Gypsum Recycle Pond with a composite liner, removing solids from D Basin and abandoning in place. Install a concrete pad for geotextile tube

layout during future dredging efforts. These tubes would receive dredge flows, capture the solids, and the pad would capture the decant water which would be returned to the Coal Pile Runoff Pond.

- <u>Option B</u>: Include Option A scope and retrofit D Basin with a composite liner and a drainage collection layer to support future dredging efforts in place of the concrete pad solution.
- <u>Option C</u>: Include Option A scope without the concrete pad. Future dredging efforts would involve alternate measures such as mobile filter presses or temporary liners for geotextile tube laydown areas.
- <u>Option D</u>: Install a composite liner in the D Basin and the Gypsum Recycle Pond, reroute the flows from the Mercury Effluent Treatment System to the retrofitted D Basin, and clean out the Coal Pile Runoff Pond. The Coal Pile Runoff Pond would no longer be considered a CCR impoundment and would remain in service as a process wastewater pond. Future dredging efforts would be performed similar to Option C; however, the frequency of this dredging is expected to be significantly reduced based on the larger size of D Basin.
- <u>Option E</u>: Reroute the centrate centrifuge effluent and magnesium thickener effluent directly to the Mercury Effluent Treatment System (bypassing the Gypsum Recycle Pond), remove solids from the Gypsum Recycle Pond and close the Gypsum Recycle Pond in accordance with the CCR Rule and construct a non-CCR impoundment in its place, temporarily direct the Mercury Effluent Treatment System effluent to D Basin, retrofit the Coal Pile Runoff Pond with a composite liner, and close the D Basin.

Dynegy investigated the possibility for meeting the alternate liner demonstration allowed under the proposed Part B Rule; however, Dynegy has since elected to proceed with modifying plant operations and retrofitting the Coal Pile Runoff Pond at Zimmer. Dynegy has selected the Option E approach, which includes removal of CCR material and relocation of the CCR flows away from the Gypsum Recycle Pond to allow for Dynegy to close the pond and repurpose the pond as a non-CCR impoundment, retrofit of the Coal Pile Runoff Pond, and closure of the D Basin (once the retrofit of the Coal Pile Runoff Pond is completed). This selection was based on comparison of capital cost, O&M cost, and several business factors. The proposed retrofit project would include the following general scope and sequence:

- Relocate the CCR wastestreams from the Gypsum Recycle Pond:
 - Install a 20,000-gallon agitated tank to receive the magnesium thickener overflow and a set of pumps to pump this water directly to the Mercury Effluent Treatment System through 3,300 feet of new 6" HDPE piping
 - Install 3,300 feet of new 3" HDPE piping to direct the effluent from the centrate system to the Mercury Effluent Treatment System

- Isolate the Coal Pile Runoff Pond to allow for retrofit:
 - Temporarily reroute flows from the Mercury Effluent Treatment System to D Basin. Once the CCR solids are removed, the remaining water can be discharged to the Wastewater Pond.
 - Temporarily route flows from A, B, and C Basins to D Basin, and from D Basin to the Wastewater Pond. This activity allows for storm surges to be contained in the D Basin prior to routing flow to the Wastewater Pond, minimizing impacts to the residence time of that pond.
- Dewater the Coal Pile Runoff and Gypsum Recycle Ponds (removing any free water to the Wastewater Pond)
- Remove any remaining CCR material and other sediment from the ponds. The material will be temporarily staged within the ponds (or the adjacent stackout pad for the Gypsum Recycle Pond) to further dewater prior to being loaded onto trucks for transport to the onsite CCR Landfill.
- Retrofit the Coal Pile Runoff Pond pursuant to the retrofit criteria in 40 C.F.R. § 257.102(k):
 - Remove the existing bottom liner system (3-feet of clay) by excavating and hauling the material to the onsite CCR Landfill.
 - Install a composite liner system including a geosynthetic clay liner (GCL) overlain by a 60-mil high-density polyethylene (HDPE) geomembrane.
 - Install geotextile, 12 inches of crushed rock over the pond bottom, and 15 inches of riprap over the pond slopes.
- Return the Mercury Effluent Treatment System discharge, as well as the discharge from the A, B, and C Basins, to the Coal Pile Runoff Pond and initiate closure of the D Basin. The closure of D Basin is not considered part of this Demonstration, as it will occur after the requested site-specific alternative deadline to initiate closure.
- Close the Gypsum Recycle Pond by removing CCR material in accordance with 40 C.F.R. § 257.102(c). Then repurpose the pond as a non-CCR surface impoundment which will receive stormwater, wash water, and other low-volume wastewater. The new non-CCR surface impoundment discharge will likely bypass the Mercury Effluent Treatment System and be routed directly to the Wastewater Pond.

2.1.7 Technical Infeasibility of Obtaining Alternative Capacity

The Coal Pile Runoff Pond and Gypsum Recycle Pond are "eligible unlined CCR surface impoundments," and thus were not previously subject to closure. Dynegy began its selected compliance project execution for Zimmer with scoping studies in early 2020 and is in the process of procuring engineering services for

detailed design for the preferred compliance approach. Consequently, it is not possible to implement the measures discussed above in a way that would likely be successful by April 11, 2021.

The conditions at Zimmer demonstrate that no alternative disposal capacity is available on-site or off-site, satisfying the requirement of 40 C.F.R. § 257.103(f)(1)(i), and Dynegy respectfully requests a site-specific extension of the deadline to initiate closure of the CCR surface impoundments until the date on which those actions are expected to be completed. Dynegy will need until October 20, 2021 to reroute the CCR wastestreams away from the Gypsum Recycle Pond, complete the closure of the Gypsum Recycle Pond, retrofit the Coal Pile Runoff Pond, and to cease routing all CCR and non-CCR flows to D Basin and initiate its closure.

2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)

The schedule for developing alternative disposal capacity is described in more detail in Sections 2.2 and 2.3. The following milestones are critical to the requested Zimmer site-specific alternative deadline of October 20, 2021:

- For the Coal Pile Runoff Pond, Dynegy is pursuing completion of the retrofit by the requested date. This retrofit will require approximately two and a half months of construction (August October 2021).
- For the Gypsum Recycle Pond, Dynegy is pursuing completion of the CCR wastestream rerouting, the closure by removal efforts, and repurposing this unit as a non-CCR impoundment by the requested date. This construction effort will require just over four months to complete (June-October 2021), primarily associated with the installation of the new agitated tank, pumps, and piping that will be delivered to the site next summer.
- Dynegy will cease receipt of all wastestreams directed to the D Basin by the requested date. These wastestreams cannot be ceased until the Coal Pile Runoff Pond retrofit is completed, and all flows are redirected from D Basin to the retrofitted Coal Pile Runoff Pond.

The installation of temporary wet storage for each of the CCR and non-CCR wastestreams, in lieu of using the Gypsum Recycle Pond, Coal Pile Runoff Pond, and D Basin while permanent capacity is being developed, is not technically feasible based on the required real estate, amount of piping that would be required, volume of the wastestreams, and need for frequent tank removal and replacement due to solids accumulation. In addition, the installation of temporary tanks or new impoundments would take more time than Dynegy's requested schedule to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away

from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose this unit as a non-CCR basin, and initiate closure of D Basin. Consequently, Dynegy affirms that the requested schedule represents the fastest technically feasible timeframe for compliance at Zimmer, and these durations are consistent with EPA's assessment that 4-12 months accurately reflects the amount of time needed to retrofit a small surface impoundment. *See* 85 Fed. Reg. at 53,529. The expected milestones for progress are summarized in Table 2-6 below.

Year or Progress Reporting Period	Status	Milestone Description	Dynegy Notes
2020	Completed	Evaluate retrofit scenarios, choose preferred option, initiate design	Dynegy has initiated design of the selected solution
April 30, 2021	Scheduled	Complete detailed design for the Coal Pile Runoff Pond Retrofit and Gypsum Recycle Pond CCR wastestream reroutes and award equipment contracts for new tank/pumps. Concurrently, apply for Dam Safety Permit and State Water Pollution Control Construction / Operating permit	All pond modification construction is forecasted to be completed within this calendar year
October 20, 2021	Scheduled	Bid/award pond modification construction contract. Receive Dam Safety Permit, State Water Pollution Control Construction / Operating permits, and General NPDES Permit for Storm Water Discharges from Construction Activities and Stormwater Pollution Prevention Plan. Complete reroute of CCR wastestreams to effluent tanks and close Gypsum Recycle Pond by removal, complete retrofit of Coal Pile Runoff Pond.	Dynegy is projecting that reroute activities for the Gypsum Recycle Pond can be completed, the Coal Pile Runoff Pond retrofit construction can be completed, and the flow of CCR and non-CCR wastestreams to D Basin can cease as of October of 2021

Table 2-6: Retrofit Project Progress Milestones

2.2 Detailed Schedule to Obtain Alternative Disposal Capacity -§ 257.103(f)(1)(iv)(A)(2)

The required visual timeline representation of the schedule is included in Appendix B of this demonstration and described further in Section 2.3 below.

2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)

The third section for the workplan is a "detailed narrative of the schedule and the timeline discussing all the necessary phases and steps in the workplan, in addition to the overall timeframe that will be required to obtain capacity and cease receipt of waste." 85 Fed. Reg. at 53,544. As EPA explained in the preamble to the Part A rule, this section of the workplan must discuss "why the length of time for each phase and step is needed, including a discussion of the tasks that occur during the specific stage of obtaining alternative capacity. It must also discuss the tasks that occur during each of the steps within the phase." 85 Fed. Reg. at 53,544. In addition, the schedule should "explain why each phase and step shown on the chart must happen in the order it is occurring and include a justification for the overall length of the phase" and the "anticipated worker schedule." 85 Fed. Reg. at 53,544. EPA notes the overall "discussion of the schedule assists EPA in understanding why the time requested is accurate." 85 Fed. Reg. at 53,544.

This section of the demonstration is focused on the remaining work necessary to obtain alternate disposal capacity for the CCR and non-CCR wastestreams and complete the modifications to the two CCR surface impoundments (the Gypsum Recycle Pond and Coal Pile Runoff Pond) at Zimmer prior to initiating closure of the D Basin. Based on the estimated durations shown in the schedule in Appendix B, the impoundment modifications will likely only require one construction season for completion. The following paragraphs outline the scope required for the retrofit of each impoundment.

Design and Permitting Activities: Dynegy has awarded an engineering contract for design of the retrofit for the Coal Pile Runoff Pond and flow modifications to support closure of the Gypsum Recycle Pond so the area may be repurposed as a non-CCR basin. Dynegy has included one month for preliminary design to confirm specification requirements and begin coordination with the necessary permitting authorities, followed by four months for the selected engineering firm to prepare the retrofit plan (per § 257.102(k)(2)) and the bid documents. This is based on typical preparation and review time for the technical documents, lead time for the equipment submittals, and includes Dynegy development of the commercial terms for the construction contract. Once the bid documents are ready to be issued, the construction contract will be bid and awarded. Dynegy has assumed the bid period will be three weeks long and that it will take two weeks to evaluate bids and select the preferred contractor and another four weeks to negotiate the commercial terms for award of the contract. This detailed design phase will be performed concurrently with acquiring the construction/operating permits and the general NPDES stormwater construction permit, dam safety permit modifications (if required), and developing a Stormwater Pollution Prevention Plan, for this project.

Equipment Procurement: Dynegy will procure the new shop-fabricated tank and pump skid(s) necessary to route the magnesium thickener overflow to the Mercury Effluent Treatment System. Based on Burns & McDonnell experience on similar projects, the shop fabricated tank and pumps are expected to have a lead times of 21 and 28 weeks from contract award to delivery, respectively. The specifications will be prepared within one month of selecting the engineering firm, will be bid out over a three-week period, and will be awarded within one month of receiving bids. The design submittals should be received within one month of contract award, allowing the engineering design of the foundations and power supply systems to be completed approximately two months after contract award. The equipment should be onsite in the Summer of 2021 as shown in Appendix B.

<u>Gypsum Recycle Pond Activities:</u> The durations shown on the project schedule are estimates by Burns & McDonnell and are based on an average work schedule of five ten-hour days per week, are subject to delays from periods with significant rain events or from impoundment/CCR dewatering impacts, and are based on the following scope of work which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site. The lead time for the piping materials are shown on the Appendix B schedule and are based on Burns & McDonnell estimates for this scope of work.
- Contractor shall construct the foundation for the new tank and pump skid. This can be completed once the contractor is onsite and the necessary materials have been received. Three weeks were allotted for preparing subgrade, form work, rebar, and pouring this foundation. Burns & McDonnell has assumed that deep foundations and piling will not be required for this equipment.
- Contractor will construct the long runs of HDPE piping for the centrate system effluent and the magnesium thickener effluent. These lines are each approximately 3,300 feet in length and will require fusion of the piping, trenching, and backfill operations. This work is anticipated to require 3 months of effort. It can be started prior to having the tank and pumps in place and available, but not until the initial deliveries of pipe material are completed. The current schedule shows the trenching efforts beginning one month after the pipe material is ordered and two weeks before the final pipe deliveries are completed.
- Contractor will set the tank and pump skid(s) following (1) construction of the foundation and (2) delivery of the equipment.

- Contractor will install the pipe from the current thickener effluent system to the new tank and from the tank to the new pump skids. The Contractor will also install raceway and cable for the new pump and agitator power feeds. These activities are based on one-month durations and are not on the critical path for the project. They cannot be completed until the equipment is set in place.
- Once the tank, pumps, piping, and power systems are installed, the Contractor can start up the new system and divert the CCR wastestreams away from the Gypsum Recycle Pond. The remaining non-CCR wastestreams are intermittent and will continue to be routed to the pond.
- Contractor shall remove the free water and any remaining CCR material and other sediment from the impoundment and haul this material to the Zimmer Landfill.
 - It's estimated approximately 800 cubic yards (CY) of CCR material will be removed from the pond, which should be able to be completed in a single work week with allowance for the pond bottom to be washed down and visually inspected by Dynegy's Consultant to confirm CCR material has been removed. It was assumed the existing concrete liner (approximately 3,100 square yards) will remain in place.
 - Since the impoundment is currently not exceeding a groundwater protection standard, the closure of this impoundment should be complete once the CCR material has been removed (per the standard outlined in § 257.102(c)). The pond footprint will remain and serve as a new non-CCR surface impoundment which will continue to receive intermittent stormwater and low volume wastewater flows.

<u>Coal Pile Runoff Pond Retrofit Activities:</u> The durations shown on the project are estimates by Burns & McDonnell and are based on an average work schedule of five days per week, are subject to delays from periods with significant rain events or from impoundment/CCR dewatering impacts, and are based on the following scope of work which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site. This requires geosynthetic materials as necessary to complete the project scope as well as valves and piping for the water redirection efforts.
- Contractor shall temporarily reroute A, B, and C Basin discharges to D Basin and reroute the D Basin discharge to the Wastewater Pond. This will require the addition of valves and temporary piping to relocate these streams.
- Contractor shall redirect flow from the Mercury Effluent Treatment System to D Basin so that CCR solids from the Coal Pile Runoff Pond may be captured in D Basin during the retrofit activities. Excess water will be pumped to the Wastewater Pond for discharge.

- Contractor shall remove the free water and then remove any CCR material, sediment, and the 3foot clay liner from the impoundment, and haul and place this material at the Zimmer Landfill.
 - This schedule duration is based on the Contractor removing approximately 24,000 CY of material. The pond bottom will be visually inspected by Dynegy's Consultant to confirm CCR material and bottom liner have been removed. Five days were included in the schedule for the inspection activities to be performed. Once approved, the subgrade will be prepared for the liner placement.
- Contractor shall install a GCL over the sides and floor of the Coal Pile Runoff Pond and secure it in a perimeter anchor trench. Contractor shall install a 60-mil HDPE geomembrane liner directly over the GCL and secure it in a perimeter anchor trench. This will occur at the same time as the GCL placement, lagging slightly behind it but overlapping. Consequently, these activities are shown on the same timeline in Appendix B.
 - This schedule duration is based on the Contractor placing approximately 2.7 acres of material (two layers total) as well as a few days to complete construction quality assurance testing for the geomembrane liner.
- Contractor shall install geotextile fabric over the HDPE geomembrane liner. Again, approximately 2.7 acres of material will be placed. This work must be completed following completion and inspection of the GCL and HDPE liners. Over the fabric layer, Contractor will install at least 12 inches of crushed rock over the pond bottom (approximately 1,700 CY) and 15 inches of riprap over the pond slopes (approximately 2,200 CY).
- The Contractor shall pump off stormwater as necessary from the Coal Pile Runoff Pond to D Basin during construction. This is an ongoing activity that will be required following each rain event during the construction period. Consequently, it is not shown on the construction schedule.
- Once the crushed rock and riprap layers are installed and any remaining punch list items are closed out, Dynegy will post the required notification of retrofit completion and resume operation of the Coal Pile Runoff Pond. Dynegy may then initiate closure of the D Basin.

2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4)

In the preamble to the final Part A rule, EPA explains that this "section [of the workplan] must discuss all of the steps taken, starting from when the owner or operator initiated the design phase all the way up to the current steps occurring while the workplan is being drafted." 85 Fed. Reg. at 53,544. The discussion also "must indicate where the facility currently is on the timeline and the processes that are currently being undertaken at the facility to develop alternative capacity." 85 Fed. Reg. at 53,545.

Dynegy has made progress toward preparing a strategy for creating alternative disposal capacity for the CCR and non-CCR wastestreams at Zimmer. Dynegy has evaluated alternatives, selected a retrofit scenario, and initiated the required design and permitting coordination activities for this project. The remaining activities are provided in Appendix B and summarized in Table 2-6.

3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(iii) has been met, the following information and submissions are submitted pursuant to 40 C.F.R. § 257.103(f)(1)(iv)(B) to demonstrate that the Zimmer facility is in compliance with the CCR Rule, including the following CCR units:

- Gypsum Recycle Pond
- Coal Pile Runoff Pond
- D Basin
- CCR Landfill

3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)

In accordance with 40 C.F.R. § 257.103(f)(1)(iv)(B)(1), I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for Zimmer, the facility is in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Zimmer's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

DYNEGY ZIMMER, LLC

inthin E. Wdg

Cynthia Vodopivec VP - Environmental Health & Safety November 25, 2020

3.2 Visual Representation of Hydrogeologic Information - § 257.103(f)(1)(iv)(B)(2)

Consistent with the requirements of § 257.103(f)(1)(iv)(B)(2)(i) - (iii), Dynegy has attached the following items to this demonstration:

Map(s) of groundwater monitoring well locations in relation to the CCR units (see Attachment C1 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Figure 2 for the CCR Landfill)

- Well construction diagrams and drilling logs for all groundwater monitoring wells (see Attachment C2 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Attachment A for the CCR Landfill)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (see Attachment C3 for the surface impoundments and Attachment C5 Hydrogeological Characterization Report Figures 3 and 4 for the CCR Landfill)

3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment C4. Samples were taken for the second 2020 semi-annual monitoring period, but results are still under review.

3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site are included as Attachment C5. In addition, see the Hydrogeological Characterization Report (Section 4.2) for relevant information pertaining to the CCR Landfill.

3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)

Background sampling began at Zimmer in late 2015 and continued for eight consecutive quarters. The first semi-annual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in May 2018. The results, through the first 2020 semi-annual monitoring period, indicate all three CCR surface impoundments at Zimmer are currently in assessment monitoring, with no exceedances of the Appendix IV parameters.

The CCR Landfill has previously detected Lithium at Statistically Significant Levels (SSL), but the CCR Landfill remains in assessment monitoring due to successful Alternate Source Demonstrations (ASDs) from April and October 2019 that set forth the following lines of evidence.

- 1. Strontium isotopic ratios in groundwater near the CCR Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters.
- 2. Boron isotopic ratios in groundwater near the CCR Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters.

The most recent groundwater sampling event in April 2020 also identified an SSL for Lithium at well MW-F. In accordance with the Statistical Analyses Plan, this well was resampled and after an evaluation of the analytical data, no SSL remained as set forth in an ASD completed in October 2020 The ASDs for the Zimmer Landfill are included as part of Attachment C4.

Accordingly, an assessment of corrective measures and the associated remedy selection efforts are not currently required at the site.

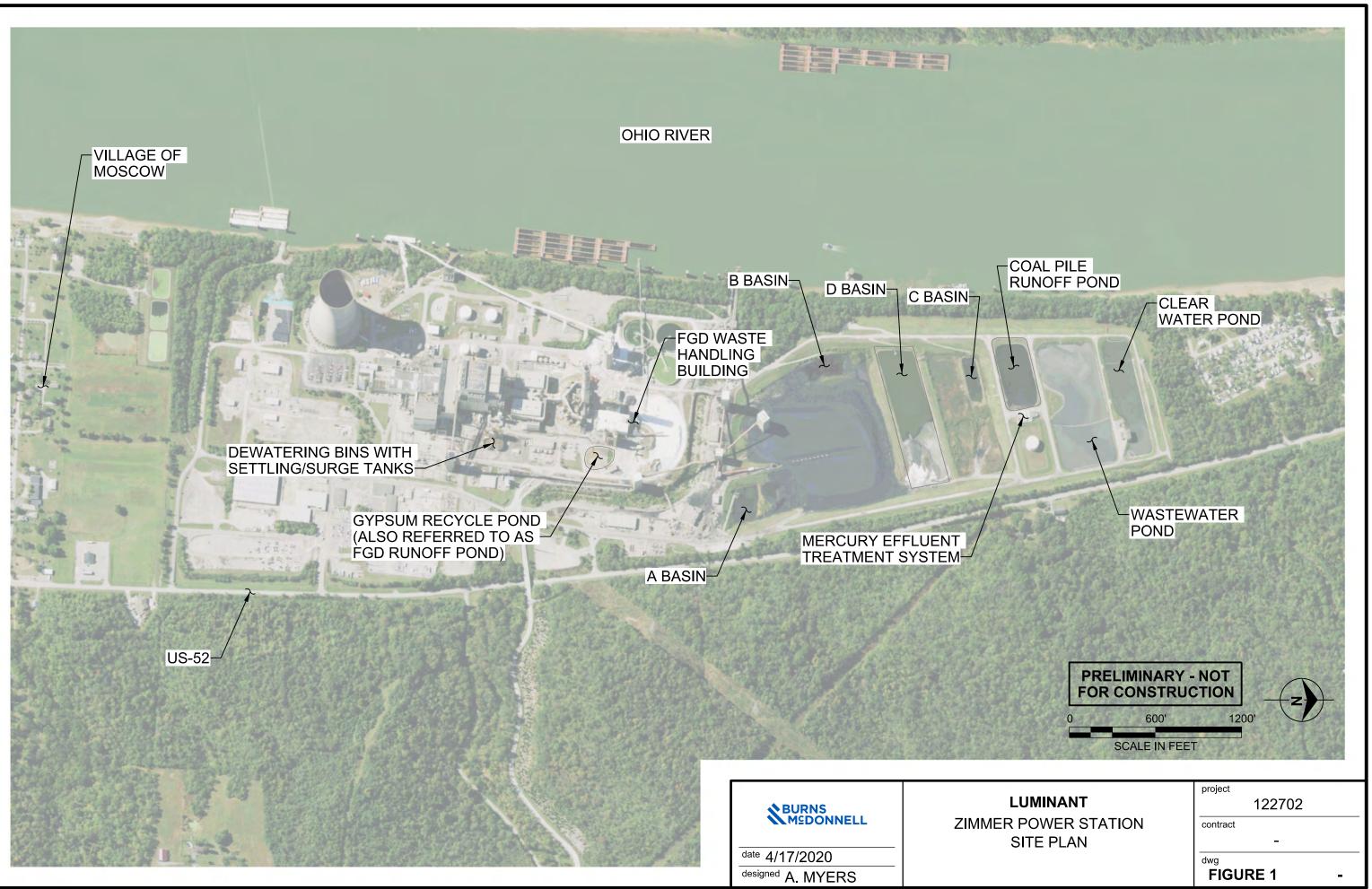
3.6 Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)

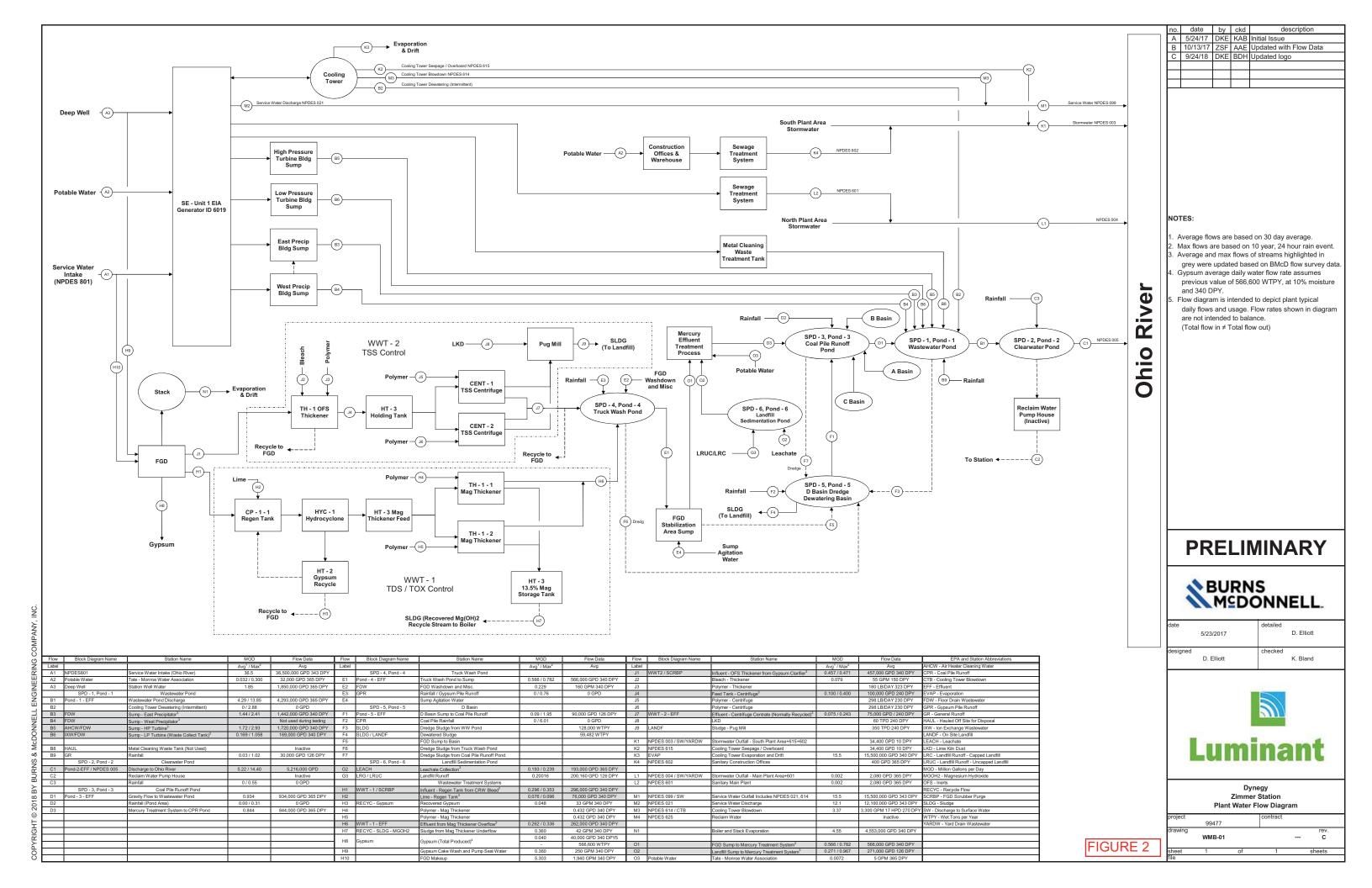
As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for the CCR units at Zimmer.

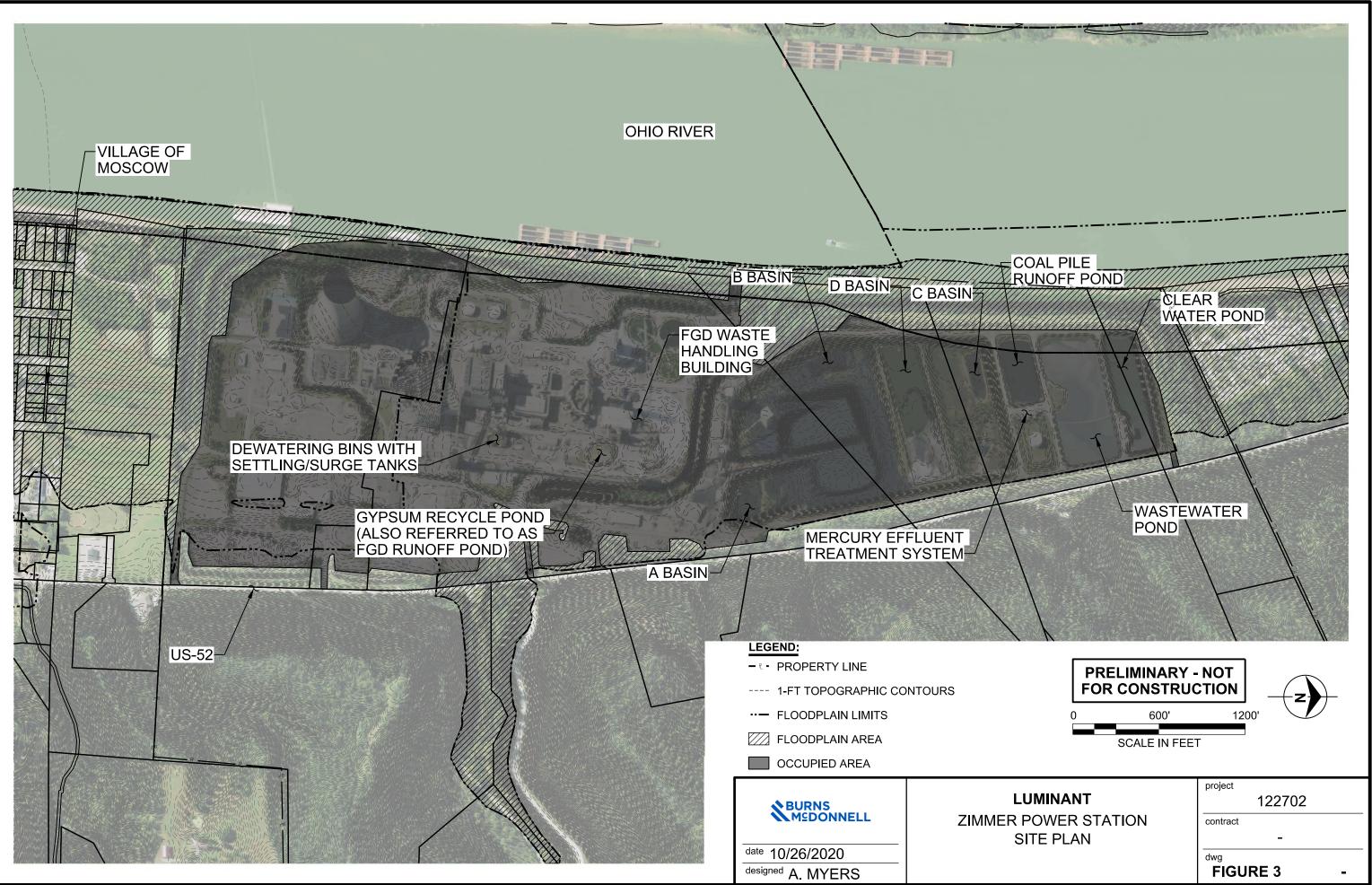
3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)

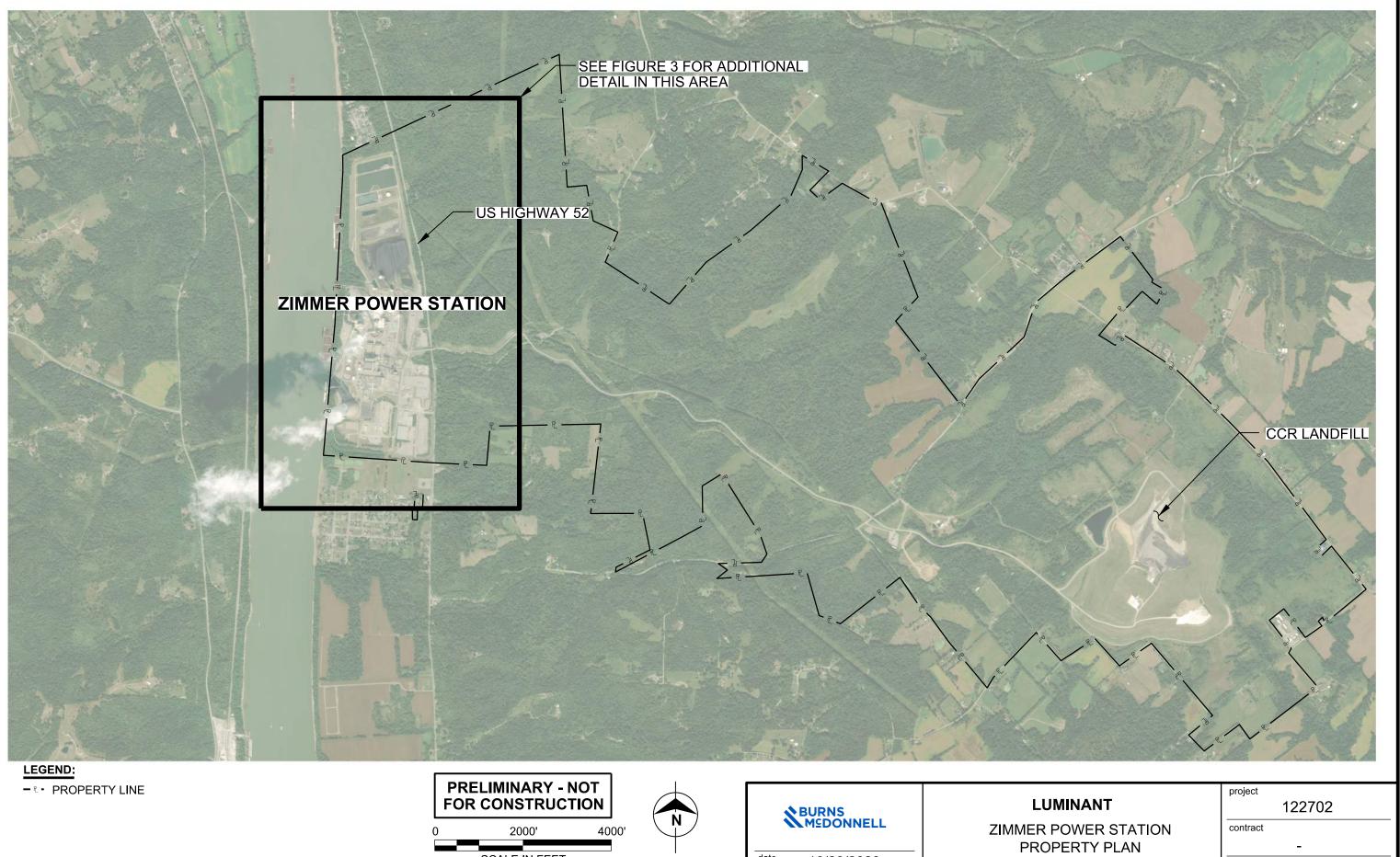
Pursuant to § 257.73(d), the initial structural stability assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C6. As required for compliance, additional stability assessments will be completed in October 2021. Periodic structural stability assessments are not required for landfills.

3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)

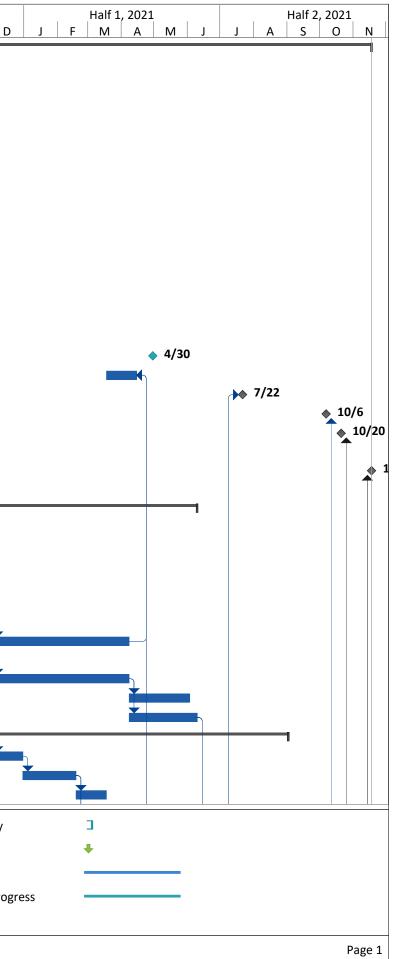

Pursuant to § 257.73(e), the initial safety factor assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C7. As required for compliance, additional safety factor assessments will be completed in October 2021. Periodic safety factor assessments are not required for landfills.


4.0 CONCLUSION


Based upon the information submitted in this demonstration, the CCR surface impoundments at Zimmer qualify for a site-specific alternative deadline for the initiation of closure as allowed by 40 C.F.R. § 257.103(f)(1).

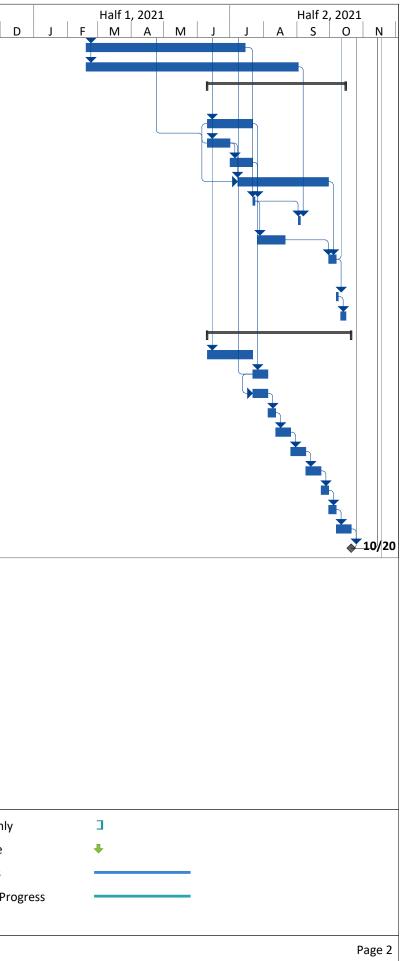

Therefore, Dynegy requests that EPA approve the demonstration and grant an alternative deadline of October 20, 2021 to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin in accordance with the CCR Rule. As discussed previously, this date is subject to delays from weather during construction or from challenges in CCR material removal and dewatering. Dynegy will update EPA on the project and any potential schedule impacts as part of the semi-annual progress reports required at 40 C.F.R. § 257.103(f)(1)(x), and if a need for a later compliance deadline is determined, Dynegy will seek additional time as described in 40 C.F.R. § 257.103(f)(1)(vii).

APPENDIX A – SITE PLANS AND WATER BALANCE DIAGRAM


Z:\Clients\ENR\VistraEnergy\122702_ALTuseDisposal\Design\Civil\Dwgs\Sketches\Zimmer_Figure4.dgn

dwg

FIGURE 4


APPENDIX B – SCHEDULE

ID	Task Name		Duration	Start	Finish	D J	Half F M	1, 2020 A M J	Half 2, 20 J A S 0	020 O N D
1	CCR Compliance Efforts		1719 days	Fri 4/17/15	Wed 11/17/21	-			J A J (
2	Final CCR Rule Published in Federal Register		0 days	Fri 4/17/15	Fri 4/17/15					
3	BMcD Retained by Dynegy to Review ELG Con	npliance Impacts	30 days	Thu 11/1/18	Wed 12/12/18					
4	BMcD Retained by Dynegy to Review CCR Con	npliance Impacts	30 days	Sat 2/1/20	Thu 3/12/20					
5	Installed Groundwater Monitoring Wells		12 days	Wed 9/9/15	Thu 9/24/15					
6	Background Groundwater Sampling		403 days	Tue 12/29/15	Thu 7/13/17					
7	Completed Liner Documentation		0 days	Thu 10/13/16	Thu 10/13/16					
8	Prepared Surface Impoundment History of Co	nstruction	0 days	Thu 10/13/16	Thu 10/13/16					
9	First Detection Monitoring Samples		0 days	Mon 11/13/17	Mon 11/13/17					
10	Assessment Monitoring Program - First Round		45 days	Tue 5/8/18	Mon 7/9/18					
11	Assessment Monitoring Program - Second Rou	und	15 days	Tue 9/18/18	Mon 10/8/18					
12	Assessment Monitoring Program - Third Roun	d	37 days	Wed 3/13/19	Thu 5/2/19					
13	Assessment Monitoring Program - Fourth Rou	nd	26 days	Wed 9/11/19	Wed 10/16/19	_				
14	EPA Published Proposed Draft ELG Rule and Co Closure Part A Rule	CR Holistic Approach to	0 days	Mon 12/2/19	Mon 12/2/19	12/2				
15	EPA Published Final CCR Holistic Approach to	Closure Part A Rule	0 days	Fri 8/28/20	Fri 8/28/20				8/28	
16	Semi-Annual Progress Report #1		0 days	Fri 4/30/21	Fri 4/30/21					
17	Prepare Written Retrofit Plan - Coal Pile Runo	ff Pond	20 days	Thu 3/18/21	Thu 4/15/21					
18	Publish Notification of Intent to Retrofit - Coa	Pile Runoff Pond	0 days	Thu 7/22/21	Thu 7/22/21					
19	Publish Notification of Intent to Close - Gypsu	m Recycle Pond	0 days	Wed 10/6/21	Wed 10/6/21					
20	Cease Placing CCR and non-CCR wastestreams impoundments	in unlined	0 days	Wed 10/20/21	Wed 10/20/21					
21	Publish Notification of Completion of Retrofit Runoff Pond	Activities - Coal Pile	0 days	Wed 11/17/21	Wed 11/17/21					
22	Impoundment Retrofit - Engineering and Const Efforts	ruction Procurement	358 days	Mon 1/27/20	Wed 6/9/21					
23	BMcD Alternatives Analysis		35 days	Mon 1/27/20	Fri 3/13/20	-	 			
24	Dynegy Review Alternatives, Select Preferred Demonstration for Site-Specific Alternate to Ir	•	141 days	Mon 3/16/20	Mon 9/28/20			7		
25	Award Engineering Services for Pond Retrofit	Project	20 days	Tue 9/29/20	Mon 10/26/20	-				
26	Preliminary Design for Specifications and Pern	nitting	27 days	Tue 10/27/20	Wed 12/2/20					
27	Detailed Design: Prepare Pond (Gypsum Recyc Runoff Pond) Modfication Bid Documents	cle Pond, Coal Pile	90 days	Thu 12/3/20	Wed 4/7/21					
28	Environmental Permitting		90 days	Thu 12/3/20	Wed 4/7/21	-				
29	Obtain SWPPP Permit		40 days	Thu 4/8/21	Wed 6/2/21	-				
30	Dynegy Bid/Award Pond Modification Constru	iction Contract	45 days	Thu 4/8/21	Wed 6/9/21					
31	Procurement - Magnesium Thickener Effluent T	ank/Pumps	195 days	Thu 12/3/20	Wed 9/1/21					
32	Prepare Equipment Specifications		20 days	Thu 12/3/20	Wed 12/30/20					
33	Bid/Award Equipment Contracts		35 days	Thu 12/31/20	Wed 2/17/21					
34	Vendors Prepare/Submit Design Submittals		20 days	Thu 2/18/21	Wed 3/17/21					
		Task		External	Tasks		Ma	nual Task		Finish-only
Droige	t: Zimmer CCR Surface Impoundment	Split		External	Milestone 🔹	>	Dur	ation-only		Deadline
-	Extension Demonstration Wed 10/28/20	Milestone	•	Inactive 1				nual Summary Rollup		Progress
		Summary		Inactive I	Ailestone		Ma	nual Summary		Manual Progr
Date:		,								

36 F 37 Gyp Rer 38 F 39 C	Shop Fabricated Tank Delivery Pump Skid Delivery psum Recycle Pond - CCR Wastestream Reroute and Closure by moval	105 days		Finish		. _	1 1	, 2020			Half 2,		
36 F 37 Gyp Rer 38 F 39 (Pump Skid Delivery psum Recycle Pond - CCR Wastestream Reroute and Closure by		Thu 2/18/21	Wed 7/14/21	D	J F	M	A	M J	JA	S	0	N
37 Gyr 8 F 39 C	psum Recycle Pond - CCR Wastestream Reroute and Closure by	140 days	Thu 2/18/21	Wed 9/1/21									
39 (92 days	Thu 6/10/21	Fri 10/15/21									
	Pipe Material Acquisition	30 days	Thu 6/10/21	Wed 7/21/21	-								
40 C	Contractor Mobilization to Site	15 days	Thu 6/10/21	Wed 6/30/21	-								
	Construct Foundation for Tank and Pump Skid(s)	15 days	Thu 7/1/21	Wed 7/21/21									
41 I	Install HDPE Piping - Trenching/Fusion/Backfill	60 days	Thu 7/8/21	Wed 9/29/21									
42 S	Set Tank	2 days	Thu 7/22/21	Fri 7/23/21									
43 S	Set Pumps	2 days	Thu 9/2/21	Fri 9/3/21									
44 I	Install BOP Piping/Valves/Power Supply	20 days	Mon 7/26/21	Fri 8/20/21									
	Startup Tank/Pumps and Reroute Centrate and Mag Thickener Flows to Mercury Effluent Treatment System	5 days	Thu 9/30/21	Wed 10/6/21									
46 L	Unwatering of Pond to Waste Handling Building Sump	2 days	Thu 10/7/21	Fri 10/8/21									
47 F	Removal of Ponded CCR Material	5 days	Mon 10/11/21	Fri 10/15/21	-								
48 Coa	al Pile Runoff Pond Retrofit Construction	95 days	Thu 6/10/21	Wed 10/20/21									
49 L	Liner Material Acquisition	30 days	Thu 6/10/21	Wed 7/21/21									
50 T	Temporary Reroute of Flows to D Basin (and to Wastewater Pond)	10 days	Thu 7/22/21	Wed 8/4/21									
51 T	Temporarily Redirect Mercury Effluent Treatment System to D Basin	10 days	Thu 7/22/21	Wed 8/4/21									
52 ເ	Unwatering of Pond to D Basin	5 days	Thu 8/5/21	Wed 8/11/21									
53 F	Removal of Remaining Ponded CCR Material	10 days	Thu 8/12/21	Wed 8/25/21									
54 F	Removal of Clay Bottom Liner and Preparation of Subgrade	10 days	Thu 8/26/21	Wed 9/8/21									
55 🤆	GCL & HDPE Liner Installation	10 days	Thu 9/9/21	Wed 9/22/21									
56 🤆	Geotextile & Crushed Rock Layer Installation	5 days	Thu 9/23/21	Wed 9/29/21									
57 F	Riprap Installation	5 days	Thu 9/30/21	Wed 10/6/21									
58 F	Punchlist, Piping Mods, and Contract Closeout	10 days	Thu 10/7/21	Wed 10/20/21									
59 F	Return Flows to Coal Pile Runoff Pond and Initiate Closure of D Basin	0 days	Wed 10/20/21	Wed 10/20/21									

	Task		External Tasks		Manual Task		Finish-only
Project: Zimmer CCR Surface Impoundment	Split		External Milestone		Duration-only		Deadline
Extension Demonstration	Milestone	•	Inactive Task		Manual Summary Rollup		Progress
Date: Wed 10/28/20	Summary	1	Inactive Milestone	\diamond	Manual Summary	 1	Manual Pro
	Project Summary		Inactive Summary	0	Start-only	C	

APPENDIX C – COMPLIANCE DOCUMENTS

APPENDIX C1 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER COAL PILE RUNOFF POND

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UNIT ID:125

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER GYPSUM RECYCLING POND **UNIT ID:124**

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UPGRADIENT MONITORING WELL LOCATION

- DOWNGRADIENT MONITORING WELL LOCATION
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

ZIMMER D BASIN **UNIT ID:121**

VISTRA CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

APPENDIX C2 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

COMPA PROJE COORDI	NY <u>N</u> CT Z	EP M. SU BORING	940	Pli W	1~1 5	20			0G 	OF	WER SERVICE CO. JRATION EERING LABORATORY Renamed MW BORING BORING NO. <u>7</u> DATE <u>4-26-89</u> SITUBE CASING USED <u>512E (HM)</u> DRILLING M BORING BEGUN <u>4-26-89</u> BORING COMPLETED GROUND FLEVATION 544	HEETC CORE 100 USED
TIME			1:00			<u> </u>		DILIUS			GROUND ELEVATION SHI REPERRED T FIELD PARTY Howell - DAMST	New Yorks
DATE		4	-27-	89						1	FIELD PARTY Howell - DAMST	Ri
SAMPLE Number	SAM DEP IN F FROM	P L E T H E E T T O		ETRA	1 1 0 N	TOTAL LENGTH RECOVERY	R Q D	DEPTH IN Feet	GRAPH LOG	N C N	SOIL / ROCK IDENTIFICATION	DRILI
						ļ						
1	25	4.0	2	5	8	15"					Clay- Be- moist - med to Low plasticity	
								1		CL		
					-			-				
			0		0						SAME AS 1	
2	7.5	4.0	1 3	5	8	18.						
			-							_		
			1		1					_		
Ī	1		<u> </u>			1		10		-		
3	125	14.0	3	4	5	18.					SITT/ CIA+ - Multi-coloned Br med to how plasticity	•
					<u> </u>	1				CL	med to how plasticily	
						<u> </u>				-		
					-							
					 		1					
4	17.5	19.0	3	4	5	18					SAME AS Z	
-								-		_		
<u> </u>			-									
	6",	3.25 H	154			-	Ļ	20-		-	·	

Joa N						A	EP			JIIII	WER SERVICE CORFORATION EERING LABORATORY Renamed MW- BORING	
									00	Ur	BORING BORING NO. ZII DATE SI TYPE OF SAMPLES: SPT 3"TUBE CASING USED SIZE DRILLING M	
									_		BORING NO. Z DATE SI	HEET Z OF
COORD	INATES		-						-		TYPE OF SAMPLES: SPT3 TUBE	CORE
Loca	TION OF	BORING	31								CASING USED SIZE DRILLING M BORING BEGUN BORING COMPLETED	100 USED
141	RLEVE										BORING BEGUN BORING COMPLETED	
TIME		<u> </u>									GROUND ELEVATION REFERRED T	
DATE			- 10.0								FIELD PARTY	0
Ulli												(116
-		PLE		ANDA	8.0				9			
u e	DEP	РСЕ Т Н Е Е Т	PEN	ETRA	T10H	L H H	NUD	DEPTH IN FEET	2	S S	SOIL / ROCK	DRILLE
R B	IN P	EET	RES	ISTA	NCE	C NG	0/	IN	H	s	IDENTIFICATION	NOTES
N ^U N	FROM	то	61	ow	/ 6*		10	FEET	6 8 4	2		
	1.110.12	1		1	1					_		
									1			
-			-			1		20-				
	1											
			1								TOP Q -	
5	225	24.0	2	3	4	19"		2 E			MAJ- Vellouich Re- MailT T.	
9		1010		-	1	1.0					Clay- yellowish BR- moist To Wet- med TO Low PLASTICITY	
								3		CL	gerally	
	-				1			1 73			Bottom 9"	l.
							_				Clay- GRAZ WET- med TO	
			1								Clay- GRAY- Wet- med ro Low plasticity	
								=			ester printing f	
			1.00	4				1 3		ci		
										-		
								-				
6	27.5	29.0	2	3	3	18"					5/AY- GAAY- WET med To	
					I						ElAy - GARY - WET - med To how plasticity	
	i										, ,	
			1		Ì			=		12	198 G. 1	
					L							
					Ī							
					1	1		30-	6 j			
	i i	1	i	i	i	i						
			i		<u>i</u>	1		_			1	
		1			1			-				
1	325	34.0	1	2	3	18"					SAME AS 6	
	l l	1						1 3				
			ł.			<u> </u>		-				ļ
			i i		1	1		1 3				
					<u> </u>							
				Î	i			E		_		
				ĺ	1			-				
				1	1							
0	001	ac.			-	1		Ξ				
8	51,5	39.0	20	26	12	16		30			SAND + GRAVE - GRAJ-BA- SATURATED - QUARTZ-ROUNDED Is MALSIER - US FINES	
		1						1 3			SATURATEd - QUARTZ-Rounded	
	·								10 II		12"MALSIER" uf FINCS	
											/	
					<u> </u>					GM		
l					İ			- 3				
	- 11	l	I		I	1		40-		_		
- 10		3.25 H				L						
	HW (CER 4								
	NQ	CASING . Core R Casing				<u> </u>						

Joe N Compa	0					A 			0G	OF	WER SERVICE CORPORATION EERING LABORATORY Renamed MW BORING	
									-		BORING NO. Z 117 DATE S TYPE OF SAMPLES: SPT 3" TUBE	HEET JOF
	INATES				1.11				-	1	CASING USED SIZE DRILLING	CORE
Loca	TION OF	BORIN	Gı								BORING BEGUN BORING COMPLETE	0
WAT	ER LEVE	EL								1	GROUND ELEVATION REFERRED	
TIM]		DA
DATI										1	FIELD PARTY	Rig
SAMPLE Number	DEP IN P	Р L E • Т H • E E T • T O	PEN	ANDA ETRA SISTAI	RD TION NCE / 8	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET		1 0	SUL / RUCK	DRILLER NOTES
										-		
								40-				
								114				
9	42.5	44.0	10	15	15	12"		-			SAND- BR- QUANTZ- MOIST	-
										SW		
						-		1		PN		
_								Ē				·
		1	1		1						SAND. BR- QUART - SATURA	ted
10	47.5	49,0	8	12	17	12						
										-		
				-			_		2	sP		
											· · · · · · · · · · · · · · · · · · ·	
					Ì							
			<u>.</u>					50		-		
			1		Î			<i>\$</i> 9		H		
				1						-	SANd + GARYEL- BA-SAFURATEd	
11	52.5	54.0	15	17	10	14"					QUARTZ - Rounded - 1"MAX Siz	د
								-			QUARTZ - Rounded - 1"MAX Siz Cu/ FINES - STRONG REACTION TO HEL	
	0		1	1		<u>k</u>				1	Ther	
			į	1.	Ì					GM		
			1	1						-		
								minn				
												1
			ļ	<u> </u>	-					-		
12	\$7.5	00	12	14	11	15"		initin.		-	SAND- BR- SATURATEd.	
1~	21.5	12.0	12	17-	10	1					QUARTZ - TRACE OF PEA GRAVE	1
											STRONG REACTION TO ALL	
										SP	5	
								-				
	ŝ							. 3	l			
		3.25 ⊦			•			60-				
		CASING		сел 4	."							
		CORE F										
		CASING CASING		3	*	L					RECORDER	

PROJE	ст <u> </u>							L.		OF	BORING BORING NO. <u>7117</u> DATE TYPE OF SANPLES: SPT3" TUBE	SHEET 4 0
	INATES								-		CASING USED SIZE DRILLING	MUD USED
Loca	TION OF	BORING	3:			_					BORING BEGUN BORING COMPLET	ED
WATE	RLEVE	iL							-		GROUND ELEVATION REFERRED	
DATE											FIELD PARTY	Ric
we	-	PLE		ANDA	RD	122	RQD	DEPTH IN FEET	L O G	5	SOIL / ROCK	DRILL
AMPL	IN F	тн ЕЕТ ТО	RES	SISTA	NCE	ENG	0/	IN	I	s S	IDENTIFICATION	NOT
νž	FRON	то	BL	. 0 ₩	/ 6"	F J W	/0	FEET	8	2		
			1		-	1		40				
								_				
10	inc	1.10		1.00	11	13"					C. III C. F. C. L. P.	
13	62.5	64.0	16	17	11	13					GRAVELLY SITTY SAND- BR- GATURIATED - QUARTZ - Jy" MAK SIZE - STRONG REACTION	
								Ē			MAK Size - STRUM REASTION	
										_	to HeL J	
			<u> </u>				ļ					
								Ξ				
	inc	64.0	20	29	21	1."		Ξ		_	South Country to Re Seture	
19	6115	67.0	14	3/	31	16		4			SANd+ GRAJE - BA. SATURA QUARTZ- 1"MAX Size - 4 FINCS - STRUNG REACTION	
											FINGS - STRUNG REACTION	
					1			Ē			TO HeL	
			-	-		-						
				1	1			70-				
			i			1		1				
				i				-				
15	72,5	74.0	12	28	40	8"		=			CLAYEY SAnd + GRAVET BR.	
											CLAYEY SANd + GAMVEL BA. SATURATEd - 1"MAX SIZE Rormided - QUARTZ -STRONG	_
				1		1					Rornded - QUARTZ STRONG	
						l.				60	REACTION TO NEL	
			1	1		1		=				
	İ	1	1		<u> </u>	1						
16	77.5	79.D	14	30	38	9"		=			SAME AS 15	
								Ξ				
								-				
				1	1							
1 1		1	E.	1	f	1		80-	§ (

Location of Boring: Casing used Size Drilling mud used Water Level Boring begun Boring Completed Time Ground Elevation Referred to	OMPA	нч :т							L		OF	BORING BORING NO. Z-11 7 DATE S TYPE OF SANPLES: SPT 3" TUBE	HEET 5 OF
Watch Level Dure							-					CASING USED SIZE DRILLING N	UD USED
Twit Twit Residence Date Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ Derti Soil / Rock DRILI Standano $z \in aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ $z = aco$ Standano $z = aco$ $z = aco$ $z = aco$ <th>LUCA</th> <th></th>	LUCA												
Dare Field Party Free Party Restandand $accord accord accor$			<u>د</u>							_		GROUND ELEVATION REFERRED T	ro
SAMPLE STANDAND z Radio Destant Solit NOT DRILL 0 CETTN PERTATION z Radio z Radio z Radio z <												Erri o Dierry	Pic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DATE												
17 \$25 \$40 8 11 13 11 13 11 13 11 14 13 11 14 13 11 14 16 14 16 14 16 16 13 11 14 13 11 14 16 <t< th=""><th>SAMPLE Number</th><th>DEP IN F</th><th>TH EET</th><th>ST PEN RES</th><th>ANDA ETRA ISTA</th><th>RD TION NCE / 6"</th><th>TOTAL LENGTH Recovery</th><th>rq d %</th><th>DEPTH IN FEET</th><th>GRAPN LOG</th><th>U S</th><th></th><th>DRILL</th></t<>	SAMPLE Number	DEP IN F	TH EET	ST PEN RES	ANDA ETRA ISTA	RD TION NCE / 6"	TOTAL LENGTH Recovery	rq d %	DEPTH IN FEET	GRAPN LOG	U S		DRILL
17 825 840 8 11 13 11" Ganvelly Sound- Ba Sortward Ganvelly Sound- Ba Sortward Stopped Nole- 89,9 and Installed Z'OB well		PROM				Í.	1						
17 825 840 8 11 13 11" Ganvelly Sound- Ba Sortward Ganvelly Sound- Ba Sortward Stopped Nole- 89,9 and Installed Z'OB well									80-				
Image: State of the state						1							
Image: State of the state													
Image: State of the state	17	015	040	8	$ _{D}$	13	11"		1 8 🗄		-	Comulis Sand. Br. SAFURAT	ed
$\frac{1}{12} = \frac{1}{12} $	11	Odis	040	0	μ_	10	1					QUARTZ 14" MAX SIZT - ROUNDA	1
18 87.5 88.0 12 11 14 13" 18 87.5 88.0 12 11 14 13" 18 87.5 88.0 12 11 14 13" 18 87.5 88.0 12 11 14 13" 18 87.5 88.0 12 11 14 13" 18 87.5 88.0 12 14 14" 18 87.5 88.0 12 14" 14" 18 87.5 88.0 12 14" 14" 19 10 14 14" 14" 14" 10 10 14" 14" 14" 11 14 14" 14" 14" 11 14 14" 14" 14" 11 14 14" 14" 11 14 14" 14" 11 14 14" 14" 11 14 14" 14" 11 14" 14" 11 14" 14" 11 14" 14" 11 14" 14" 12 14"					1				1 2			ul FINOS + BLACK LISMITE	
18 87.5 88.0 12 11 14 15" 60 avcilly Sond-Ba Sontrabled Quantic Rowdels - 34" max sont Quantic Rowdels - 34" max sont Quantic Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image: Rowdels - 34" max Rowdels - 34" max Image:				1					1 3			STRONG REACTION TO HEL	
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im									-				
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im			1						-				
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im									1 5	1 C			
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im									1 2				
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im							-						
Cumate: Revolution matestic Lines: Strong Renet Diam Imatestic Imatestic Im		00.4			1	1	1		3	1			
STOpped Nole - 89,9 Awd installed Z'O B. well 	18	87.5	89.0	12	11	14	13					GRAVELLY SAND - BR. SATURATED	
STOpped Nole - 89,9 Awd installed Z'O B. well 		1							1 3		_	QUARTE- ROVADEL - 14 MAR SIZ	
STOpped Nole - 89,9 Awd installed Z'O B. well 						-						up FIACS - STRONG REACTION	
					1				1 3	1 -		170 Meh	
									1 8				
		1				1 T			1 5	1 1			
				 	-	1			·	i h	-		
				ļ.						1			
				<u>i</u>	1	0	-	1	1 3	a h			
		1		1		2						Stopped Nole- 89,9 AND	
			1	1	-	1	1			1 1		INSTALLED Z'OB well	
					ļ.		1						
		1	1	1	i	1	1	1		1 [
			1							3 [
					1		1	1			1		
		1					1		1 2	1 1		ŤŁ	
										1	_	· · ·	93
					I		-		4 -	1		877) 	
										4 F		Car .	
						-	<u></u>		4 4	3 -	-		
								1		4 1	-		
									-	I F			
										4 -			
									4 4	1 1			
		1			1	1				j ŀ			
	L	C".	1 76		1	1		1		7 F			
HW CASING ADVANCER 4"						4"			1				-

•	.	•				6					C
ORE (CE-5 /87		٠.		AMEI	(. RIČAN	I EL	ECTR	IC	PO	VER SERVICE CORPORATION
		8				AE	:P (CIVIL	EN	GINE	ERING LABORATORY Renamed MW-3S
	NY AE	P						L	OG	OF	BORING
PROJE	CT ZU	nma	, r_	<u>lie</u>	NT	-			_		BORING NO. 219 DATE 5-2-89 SHEET 1 OF 5 TYPE OF SAMPLES: SPT 5 3" TUBE CORE
		N-57								1.	CASING USED SIZE DRILLING MUD USED BORING BEGUN 5-2-89 BORING COMPLETED 5-2-89
LOCA	TION OF	BURING	Flas	d pli	tin	MON	Tar	ing	we	1	BORING BEGUN $5 - 2 - 89$ BORING COMPLETED $5 - 2 - 89$
TIME	RLEVE	L 4	2.0	PM		10,0	M	2			GROUND ELEVATION 509.9 REFERRED TO DATUM
DATE		5	2-8	9	نى _	- 3 - 8	9	cing (_]	FIELD PARTY Nowell - DARST RIG 75-
	5 A M	PLE	ST.	ANDA	RD	- 2	AGD	DEPTH	80	5	
SAMPLE Number	0 6 9	тн	PEN	ETRAT	TION	NGTH	0/	IN	H	U S	SOIL / ROCK DRILLER'S IDENTIFICATION NOTES
SAI	FROM	то	81	ow	/ 6"	A EC	70	DEPTH IN FEET	6 R A	5	IDENTIFICATION NOTES
									1	-	
				_							
			1							-	
											CIAY- BR- moist - med to
1	2.5	4.0	6	7	9	14"				-	CIAY-BR- moist - med to
								1	1	ci	
		1									
_								-	1	-	
								Ξ	1		
			-								
2	7.5	9.0	3	4	4	12"					SAME AS I WY TRACE DR
									1	-	U-Fine Smud
			1		1		1				
	1							10-	-	-	
	1	İ									
					1					-	
3	12.5	14.0	3	4	6	10"		1 1	1		Stone AS I up Tance OF
	1	1	1		1				1	-	VFine Sand
_	1		1		-						
								-			
										-	
										-	
4	17.5	19.0	3	5	8	16"					Same AF / up marcos V-Fine Sand
										-	V-Fine Sound
	<u> </u>									-	
	<u> </u>	1						20-			
		3.25 F Casing		CER 4	44	L		10.55			8
		CORE F						1			
	1	CASING			5" 5"			1			RECORDER
	1 2 4	UASING		~ ~ ~	,	1		1			

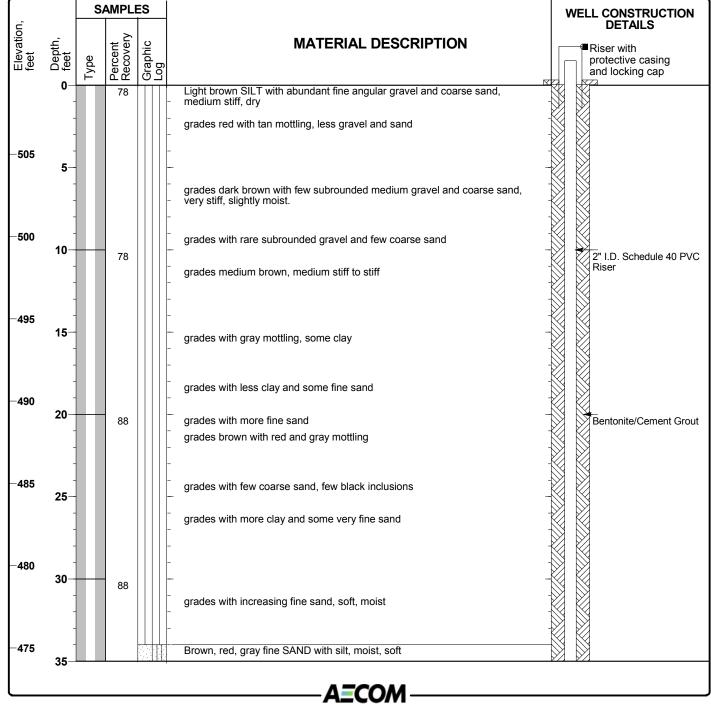
٠.

."

•

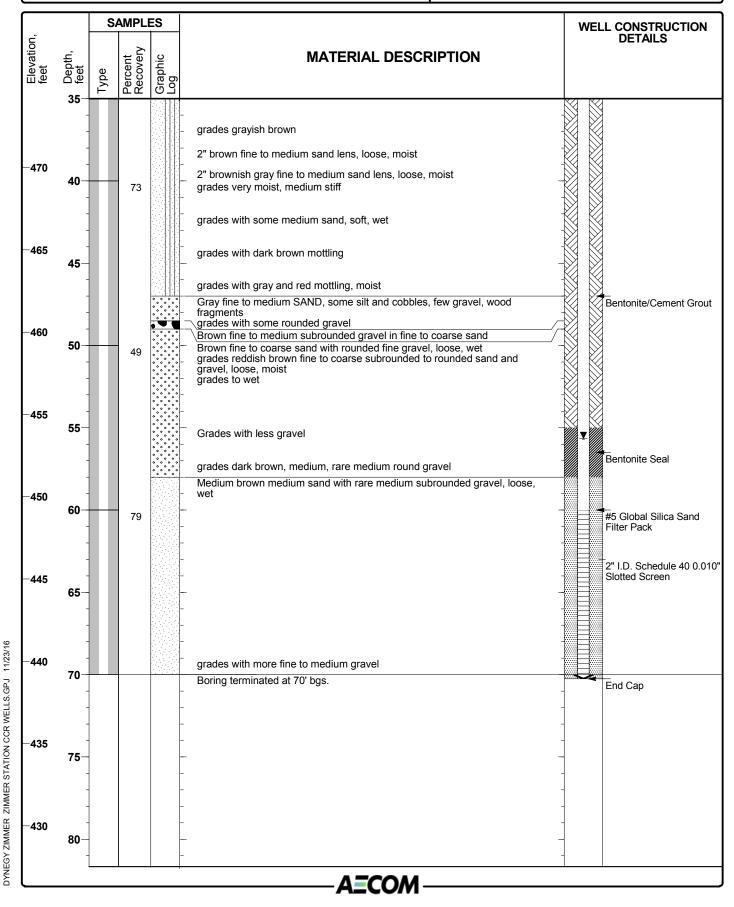
OMPANY												ERING LABORATORY Renamed MV BORING	N-33
Location of Boring: Location of Boring: Water Level \Box Time \Box Date \Box $Time \BoxDate \BoxTime \Box$	COMPA	NY									01	Board No. Z-119 Date	Surry 2
Location of Boring: Location of Boring: Water Level \Box Time \Box Date \Box $Time \BoxDate \BoxTime \Box$										-		TYPE OF SAMPLES, SPT 3"TURE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				_							1	CASING USED SIZE DRILLING	NUD USED
WATER LEVEL GROUND ELEVATION TIME	Loca	TION OF	BORING								6	BORING BEGUN BORING COMPLETE	ED
TINE TIME Date STANDARD RED PARTY Standard STANDARD RETATION STANDARD Normalized STANDARD RESISTANCE SOIL / ROCI Soil PRETATION RESISTANCE Soil SOIL / ROCI Soil PRETATION RESISTANCE Soil Soil Soil / ROCI Soil PRESISTANCE RESISTANCE RESISTANCE Soil / ROCI Soil / ROCI Soil PRESISTANCE RESISTANCE RESISTANCE RESISTANCE Soil / ROCI Soil / ROCI Soil PRESISTANCE RESISTANCE RESISTANCE RESISTANCE RESISTANCE Soil Soil Soil Soil / RESISTANCE RESISTANCE RESISTANCE RESISTANCE Soil Soil Soil Soil Resistance Resistance Resistance Soil Soil Soil Soil Resistance Resistance Soil Soil Soil Soil Soil Resistance Soil Resistance Resistance Resistance Resistance Resistanc	WATE	RLEVE	L								1	GROUND ELEVATION REFERRED	
DATE FILD PARTY resistance $resistance resistance resist$	TIME										1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE]	FIELD PARTY	Rig
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	r			r			1	1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	we					RD	금국니	RQD				SOIL / ROCK	DRILLI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MPL					NCE	A 10 V	0/	IN	×.	5	IDENTIFICATION	NOTE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SA					/ **	REC T	70	FEET	4 8 9	2	I BERTHTOP TO A	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		FROM	1		T	, J				-	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									0-		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1		20-	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1 01- 1-		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1 3	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	22.5	24.0	3	3	7	16"			1		CIAY- MUITI-COLOR BAS- Mois	đ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			1	-					med. to how plasticity	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1				1		. ,	
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons										1	CL		
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons								-		3			
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons						1				3			
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons										1			
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons									1	1			
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons						1.							
30- 7 325 34,0 2 4 5 6" 7 325 34,0 2 4 5 6" 5 nn dy Clat - multi maist w/ Da. Ba. 5 CL 5 nndy Clat - Gany wet wy VEint Gant - Lons					1		1.00		:	1	-		
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	6	27.5	29,0	4	S	17	16			1	-	Same AS 2	
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $				1	1					Ē	-		
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $										1			
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $						4				1	-		
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $				i —		1	1	-	-30	3			
$7 32.5 34.0 2 4 5 6" \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $								1		3			
8 37,5 39,0 1 2 3 16"	-			1	1		1	1	1 :	3			
8 37,5 39,0 1 2 3 16"	1					1				1			
8 37,5 39,0 1 2 3 16"	-	i							1 -	3			
8 37,5 39,0 1 2 3 16"	7	325	34.0	12	14	S	6"	1				Inady Clay - Multi-colon B.	as s
8 37,5 39,0 1 2 3 16" Lons	i	1	1	i	1	1		1				maist w/ Dr. Br. Sand her	
8 37,5 39,0 1 2 3 16" Lons		1								1			
8 37,5 39,0 1 2 3 16" Lons		1		1	1				1 ;	-	CL		
8 37,5 39,0 1 2 3 16" Lons										-			
8 37,5 39,0 1 2 3 16" Lons										1	-		9
7									-	1	-		
7		ł								3	-		
7							-		-		-	C. J. alian C. S. S. S.	
7			la .			-	11.1			1	-	DANGY CIAY- GRAY- MOIST TO	
7	8	1375	54.0	11	12	3	16			Ξ	-	wet up VFING GAAIN STAND	
										1	-	Lons	
			+			-	1				1.		-
	1		1		1	1	1			Ï	CL		
		c"	1 26 1		1	1		I	40-	7	-		
6"x 3.25 HSA	1					. 18			1	1	1		1

LOCA	INATES										BORING NO. 2119 DATE	SHEET 3 OF 5
LOCA WATE TIME											BORING NO. 2119 DATE	CORE
WATE	TION OF						-	4	-		CASING USED SIZE DRILLI	NG MUD USED
TIME											BORING BEGUN BORING COMPL	ETEO
	ER LEVE	<u> </u>								Į	GROUND ELEVATION REFERR	
											FIELD PARTY	
										k.		
	SAM	PLE	ST	ANDA	RD	- 2	RQD	DEPTH	L o a	s		
PLE BER	DEP IN F	тн		ETRA	T 10 N	N E E		DEPTH IN FEET	L L	U	SOIL / ROCK	DRILLER'S
JUM	IN F	εετ	1.	ISTA	NCE	LEN	%	FEET	4	s S	IDENTIFICATION	NOTES
	FROM	то	θL	0 W	/ 6"	-	-	-	60			
				Į.				40				
		. V2	1					40				
9	un m	144.0	2	2	3	16"					Clayey SAND - GARY SATAN up ORYANIC MATCHIA / 4000	+ T-d
1	42,5	44.0	X	~	3	16		-			uf ORVANIC BAATERIAT 40000	91
								Ē			mixfure	
					1			-		56		
				1	1							
					1						JAND + GAAJEL- BR- SATUR.	and
10	47.5	49.0	1	1	13	16 "					QUANTZ - 1/2"MAX SIZT- 4	y
			1	i.	ł			3			Fines	
					<u> </u>					5		
					ł			-		-		
					1			0ک				
	l	1			i							
	52.5	CH A	1	6	10	0						
11	24.5	2410	9	5	1	<u> </u>						
								-				
					1			-				
					<u> </u>							
					1						STARTED WAShing out Auge.	nr .
				<u> </u>								
					1			1 3				
						- 4] 3				
12	675	59.0	6	2	9	8"					SAND- BR- QUARTE- SATURA	ted
		12.4								1	TRACE OF PERGAAVEL-	
					<u> </u>					00		
			-							SP		
	6"x 3	і 3.25 н	SA	r	1			60	1			
		CASING		CER 4	44	L Jal						
		CORE R					1			8		
		CASING			5"	1						


Jõs No Compai)		******								ERING LABORATORY Renamed MV	
PROJEC											BORING NO. Z-114 JATE 3" TUBE	SHEET 7 OF
									-		TYPE OF SAMPLES: SPT 3"TUBE	CORE
									-	T	CASING USED DRILLING	MUD USED
LOCAT	TION OF	BORIN	Gı								BORING BEGUN BORING COMPLET	ED
WATE	RLEVI	EL									GROUND ELEVATION REFERRED	
TIME							_		_			
DATE								<u>.</u>	-		FIELD PARTY	Ric
SAMPLE Number	DEF		ST	ANDA	R D 7 1 0 N	TAL 4GTH DVERY	RQD	DEPTH IN FEET	H LOG	s U	SOIL / ROCK	DRILLE
V N N	IN P		RE	SISTA	NCE	LEV TO	%	FEET	A P	S N	IDENTIFICATION	NOTE
. 2	FRON	TO	81	ow	/ 6"	-			e	-		
								60 -	-			
									1			
									1			
		1						1 2	1			
								_	1			
12	12.5	1110	0	10	10	16"			1			
12	(2.5	640	12	13	17	16					SAND - BA. SATURATED	
									1		Med TO Fine GRAM Moder REACTION TO Nel	qre
			-							SH	REACTION TO NEW	
			1						1	24		-
			1								3	
												1
				-		1						
					1							
14	61.5	69.0	14	22	17	6.					1 GAAVE	1
											SAND-BR. SATURATEd	
			-					1 3			100 % Fine GRAIN STRONG	i
					i			-			REACTION TO HEL	
			1		1) 			10				
i			i					=		SP		
					!			70 -]			
1		1						=	1	-		
						-]		and a second second second second second second second second second second second second second second second	
-			10		11	l		=	1			
15	12.5	74.0	102	14	18	12			1		SAME AS 14	
1			1		i				1			
												-
				ž,	÷.				1			
			1		1	-		-				
			1							ñ.		
			1	1	1			-		1.00	1	1
								3				
		1		1		-		-	1	-		
K	776	79.0	17	24	32	101				-	SAME AS 14 GRAX	
~	1112	11	1	1-12	-	1 million					sealar in a state	
				1	1				1			
		1			1			1 1				
		1						80 -				
	6"×	3.25 ₺	ISA					00		-		
		CASING			44					E 1		1

DATAY		NY									01	BORING	6	
ATER LEVEL 00 ATE STOND CONTRACTOR 00 ATE STOND CONTRACTOR <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>BORING NO. 2 IV P DATE</th><th></th><th>HEET <u>3.</u> OF <u>3</u></th></td<>										-		BORING NO. 2 IV P DATE		HEET <u>3.</u> OF <u>3</u>
ATER LEVEL 00 ATE STOND CONTRACTOR 00 ATE STOND CONTRACTOR <td< th=""><th>ORO</th><th>NATES</th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th>-</th><th></th><th>CASING USED SI</th><th></th><th>UO USED</th></td<>	ORO	NATES				-	-			-		CASING USED SI		UO USED
area Level	_0C A	TION OF	BORING									BORING BEGUN	BORING COMPLETED)
INTE STANDARD EXE STANDARD EXE Res SAMPLE STANDARD EXE Res SOIL / ROCK DRILLE DEPTA RESTANCE $000000000000000000000000000000000000$													REFERENCE T	· · · · · · · · · · · · · · · · · · ·
SAMPLC STANDARD $x = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	_					-		-						DA1
SAUFLE OCENTR DEPTR STREADDRO PERTATION STREADDRO PERTATION STREADDRO PERTATION STREADDRO PERTATION STREADDRO PERTATION STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO PERTATION DRILLES STREADDRO S	_	_		-								FIELD PARTY		Rig
B DET TH PERTITATION DOTATION DOTATION DOTATION DOTATION NOTES PRON TO BLOW / 0' BLOW / 0' PO											3			
100 10 200 10		5 A M				RD	На Ха	RQD	DEPTH	Loa		SOIL / RO	ск	DRILLER
100 10 200 10	19	DEP				T10 N	NGT N	01	1 IN 3	Ŧ				
100 10 200 10	10	IN F				NCE	11	1%	FEET	A A		IDENTIFICA	TION	NULES
825 840 9 13 14 14'' 9 825 840 9 13 14'' 14'' 9 875 89,0 13 13'' 13'' 13'' 9 875 89,0 13'' 13'' 13'' 13'' 9 875 89,0 13'' 13'' 13''' 13''' 9 875 89,0 13'' 13''' 13'''' 9 97,5 940'' 10'''' 12'''''' 10''''''''''''''''''''''''''''''''''''		FRON	TO	BL	. o w T	/ 6"				u	-			
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$									80 _					
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$									Ξ					
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$	_								4 4					
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$														
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$						1			1 -			SAND- GARY. SA	TURMENCO	
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$,	825	840	9	13	14	14		<u> </u>			QUARTZ -STROM	REACTION	
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$\$ \$	-	2:ue	lune		1	1] =			TO HEL. Med TOF	ine GARIN	
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-				1							SP			
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-					1	1			1					
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-														
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-				1	1			0						
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-				1										
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-					1	1	1							
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-									1 2					
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-				1	1] 3					
92.5 94.0 10 12 12 12 12 90- 92.5 94.0 10 12 12 12 12 500- 50-	8	87.5	89.0	13	13	13	12"					SAME AS 17		
92.5 94.0 10 12 12 12 12 92.5 94.0 10 12 12 12 12 500 C AS 1 T 500 C AS 1 T 510 PPed Augens 94.9 + 1xs Talled well 6"x 3.25 HSA HW CASING ADVANCER 4"						Ť				i				
92.5 94.0 10 12 12 12 12 92.5 94.0 10 12 12 12 12 500 C AS 1 T 500 C AS 1 T 510 PPed Augens 94.9 + 1xs Talled well 6"x 3.25 HSA HW CASING ADVANCER 4"														
92.5 94.0 10 12 12 12 12 92.5 94.0 10 12 12 12 12 500 C AS 1 T 500 C AS 1 T 510 PPed Augens 94.9 + 1xs Talled well 6"x 3.25 HSA HW CASING ADVANCER 4"						i.			1 3					
92.5 94.0 10 12 12 12 12 92.5 94.0 10 12 12 12 12 500 C AS 1 T 500 C AS 1 T 510 PPed Augens 94.9 + 1xs Talled well 6"x 3.25 HSA HW CASING ADVANCER 4"					1	l			90-					
92.5 94.0 10 12 12 16" 500 C A S 1 T 500 C A S 1 T 510 C A S 1		1		1					10		1	1		
92.5 94.0 10 12 12 16" 500 C A S 1 T 500 C A S 1 T 510 C A S 1			I			I	Ê	I] _	1		1		
92.5 94.0 10 12 12 16" 500 C A S 1 T 500 C A S 1 T 510 C A S 1		I				i.				1				
6" x 3.25 H SA HW CASING ADVANCER 4"														
6" x 3.25 H SA HW CASING ADVANCER 4"		1	i			1				1				
6" x 3.25 H SA HW CASING ADVANCER 4"	7	92,5	94.0	10	12	12	16	!	1 3	1		SAME AS 17		
6" x 3.25 H SA HW CASING ADVANCER 4"		1	1	i i	i.	ł		1	1 -	1				
6" x 3.25 H SA HW CASING ADVANCER 4"				1	-						1			
6" x 3.25 H SA HW CASING ADVANCER 4"				1		ŧ.			1 3					
6" x 3.25 H SA HW CASING ADVANCER 4"									1 3		-			
6" x 3.25 H SA HW CASING ADVANCER 4"						Ĩ.			1 3					*/
6" x 3.25 H SA HW CASING ADVANCER 4"				1	1									
6" x 3.25 H SA HW CASING ADVANCER 4"					Î			1	1					
6" x 3.25 H SA HW CASING ADVANCER 4"							-					,		
6" x 3.25 H SA HW CASING ADVANCER 4"		-	i									STOPPED AUGERS	94.9 +	
6" x 3.25 H SA HW CASING ADVANCER 4"						1]		installed well		
HW CASING ADVANCER 4"								1	2					
HW CASING ADVANCER 4"			1			<u> </u>			1 .3					
HW CASING ADVANCER 4"					1	1			1 3	1				
HW CASING ADVANCER 4"			L	1				1		1				
NQ CORE ROCK		HW	CASING	ADVAN	CER 4	4"		· · · · · · · · · · · · · · · · · · ·						
		NQ	CORE F	ROCK										
		1	CASING			6"	1					RECORDER		

Monitoring Well MW-16

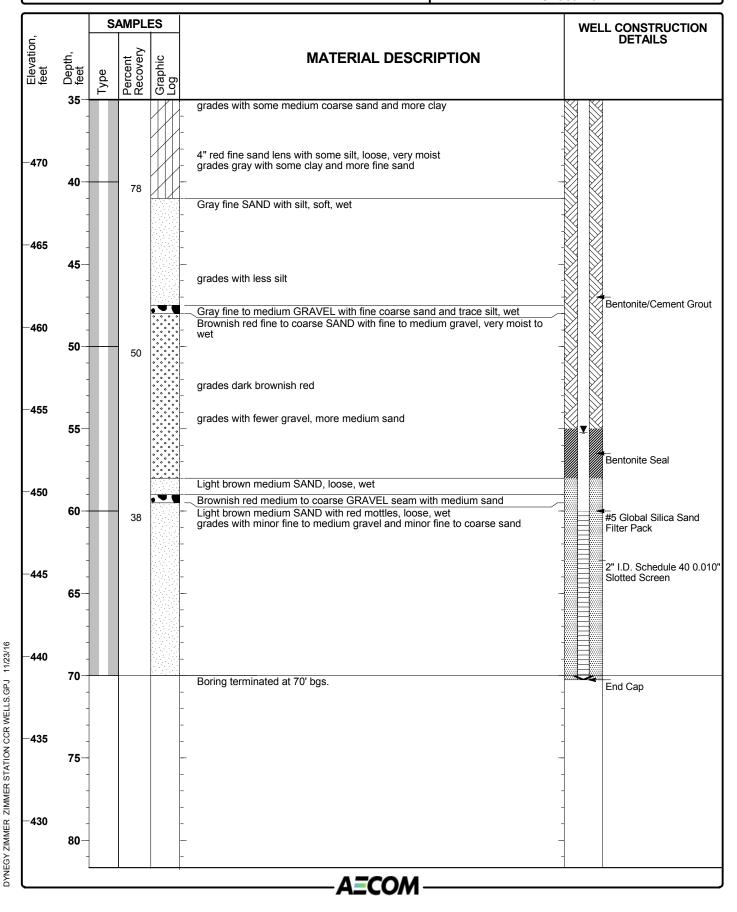

Sheet 1 of 2

Date(s) Drilled	8/2/16 - 8/3	8/16		Logged By	J. Alten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Sonic Sleeve	Surface Elevation	509.19 feet, msl
Depth to Groundwater	55.65 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.66 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Sur		rotective casing.	
Comments				•			

Monitoring Well MW-16

Sheet 2 of 2

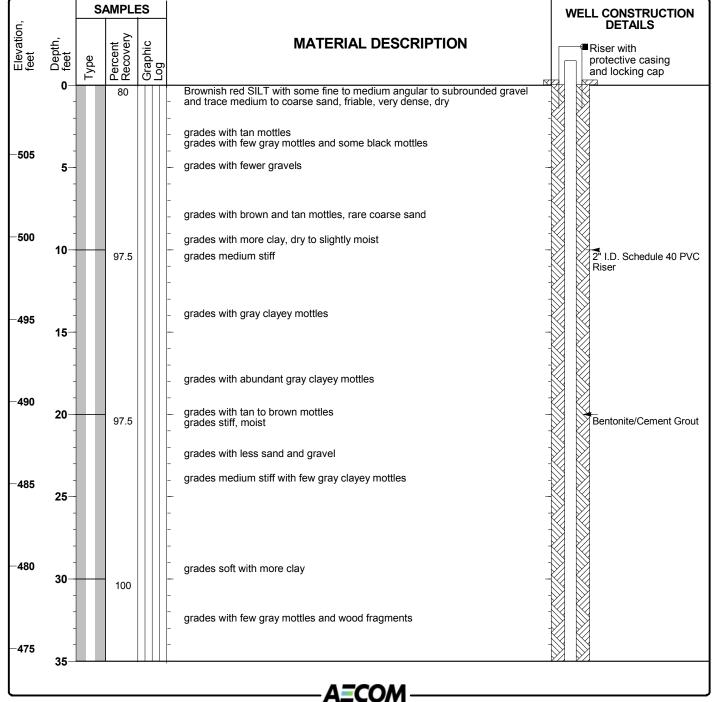
Monitoring Well MW-17


Sheet 1 of 2

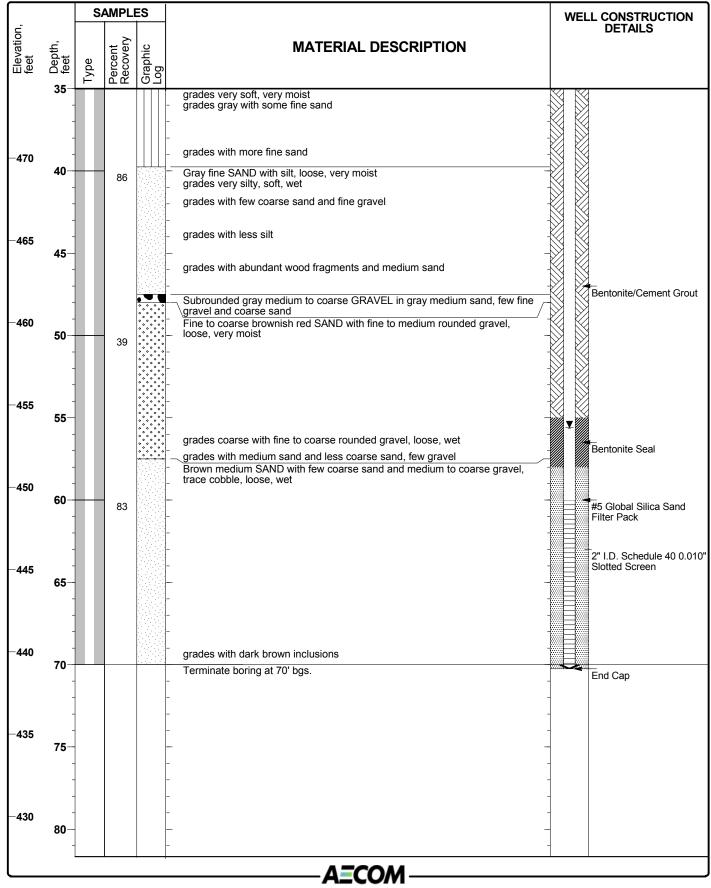
Date(s) Drilled	8/3/16			Logged By	J. Alten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Sonic Sleeve	Surface Elevation	508.83 feet, msl
Depth to Groundwater	55.22 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.25 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completi at Ground Sur		rotective casing.	
Comments							

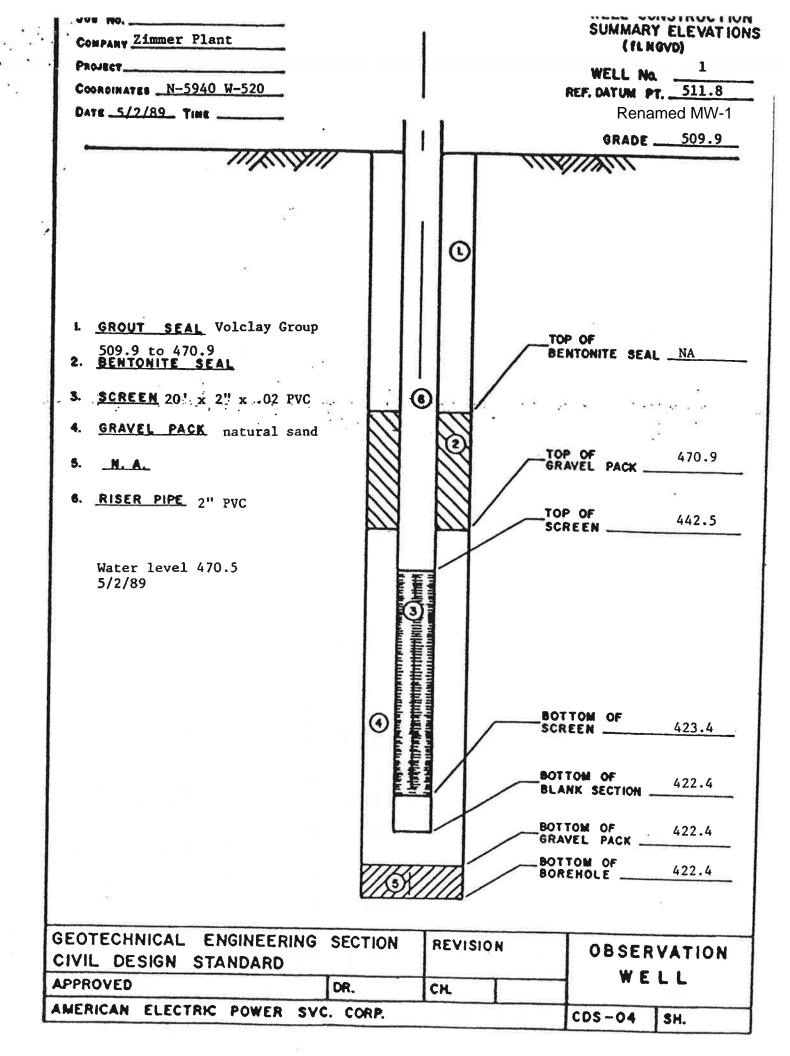
'n,		S	AMPL	ES		WELL CONSTRUCTION DETAILS
Elevation, feet	Depth, feet	Type	Percent Recovery	Graphic Log	MATERIAL DESCRIPTION	Riser with protective casing and locking cap
	0-		83		Medium brown to reddish brown friable SILT with some angular gravel, dry	
	-			-	grades with minor fine sand and more subrounded gravel, less angular gravel	
505	5			-	grades stiff with gray mottles and some clay, less sand	
	-			-		
500					grades with more rounded fine gravel	
-	10-				grades very stiff, no gray mottles	
	-		90		Medium brown to gray clayey SILT, with few fine gravel, stiff to very stiff, moist	2" I.D. Schedule 40 PV Riser
	-				noist	
495	-				grades with abundant clay	
	15-				-	
	-				grades with minor coarse sand	
	-			ИI		
490	-				grades with black inclusions, and some rounded fine gravel, some coarse sand	
	20-		96		grades with no gravel, medium stiff	Bentonite/Cement Gro
	-					
485	25-				grades with fewer gray mottles, less clay, more black inclusions, stiff	
	-			-	and a madium stiff to soft trace alow minor as and	
	-				grades medium stiff to soft, trace clay, minor coarse sand	
480	-			Wŀ	grades very soft, very moist	
	30		93		grades very light brown to gray silt, some reddish mottles, soft to medium stiff	
	-			1H-	grades with some fine sand, less clay	
475	-			n//	grades with more fine sand	
	35			n/r	2" reddish-brown silty sand seam, loose, moist	

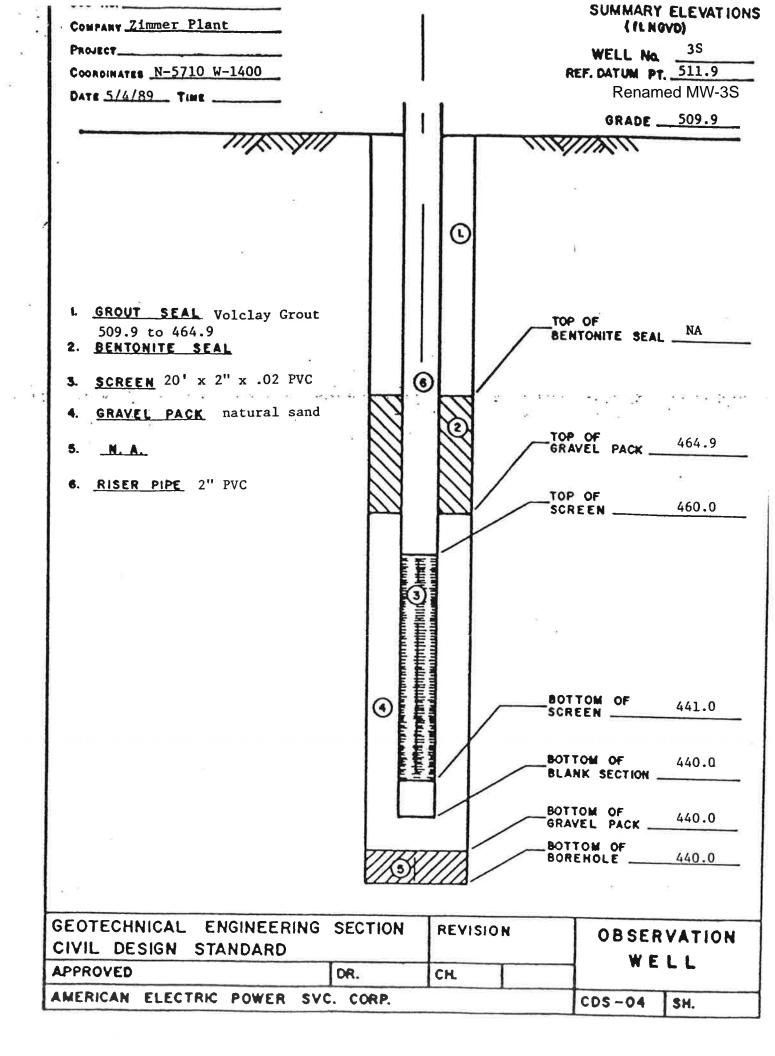
Monitoring Well MW-17


Sheet 2 of 2

Monitoring Well MW-18

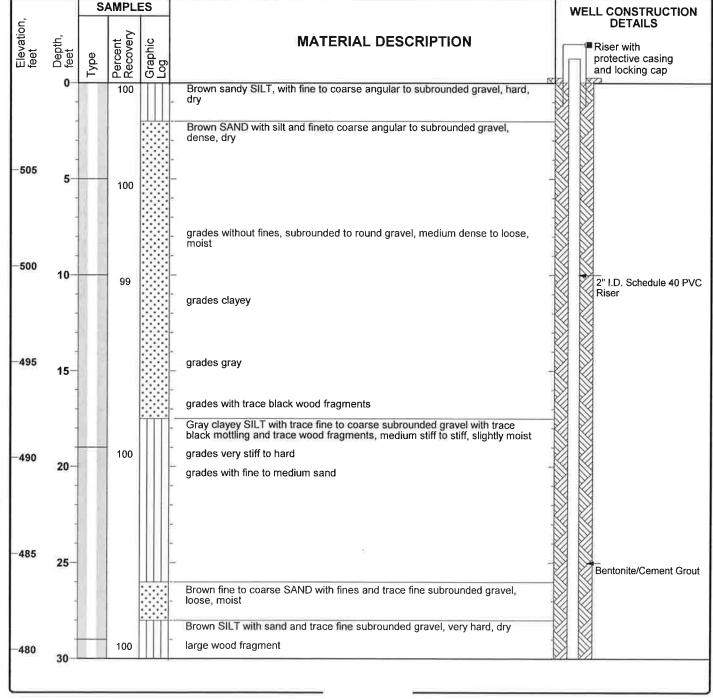

Sheet 1 of 2


Date(s) Drilled	8/4/16			Logged J By	. Alten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler S	Sonic Sleeve	Surface Elevation	509.22 feet, msl
Depth to Groundwater	55.59 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.63 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completio at Ground Surfa	n Riser, With locking cap and p	rotective casing.	
Comments							



Monitoring Well MW-18

Sheet 2 of 2

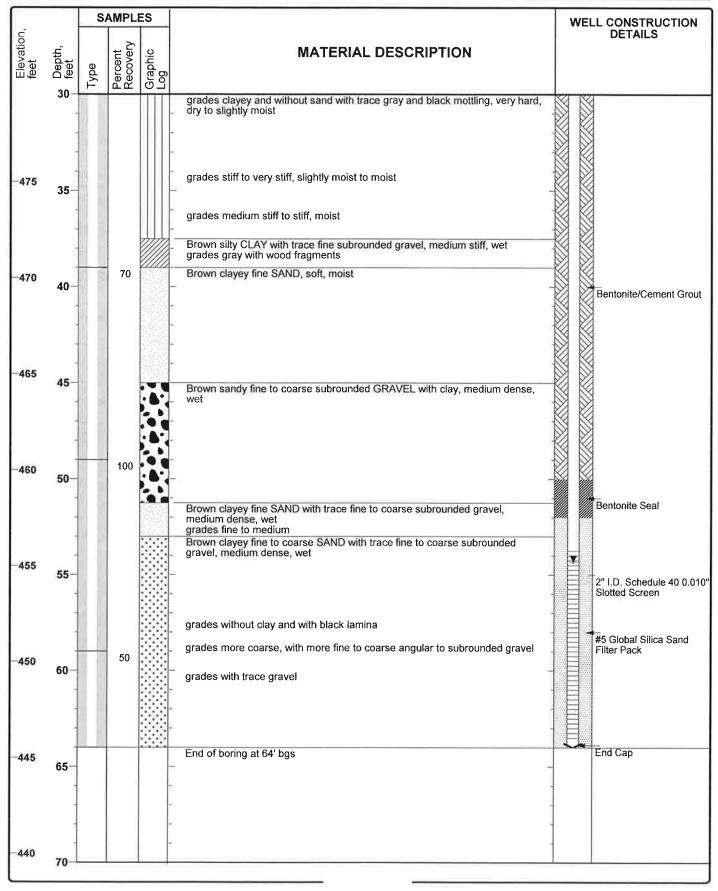


Project: Dynegy

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-7A Sheet 1 of 2

Date(s) Drilled	12/1/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	64.0 feet
Date of Ground Measurement	^{twater} 12/18/1	5		Sampler S	Sonic Sleeve	Surface Elevation	509.53 feet, msl
Depth to Groundwater	54.32 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.79 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-inch
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surfa		rotective casing.	
Comments							



Project: Dynegy

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-7A

Sheet 2 of 2

Compa Proje	NY RE	P	IER	PIN	wT			L.	06	OF	ERING LABORATORY BORING Rena BORING NO. 2124 DATE 4-20-89 SH	
LOCA	TION OF	N-J BORIN	19: 19: 19:	E-1	130			inc we			TYPE OF SANPLES: SPT V 3" TUBE CASING USED SIZE DRILLING MU BORING BEGUN 4-20-89 BORING COMPLETED	4-25-
		10	1:00								GROUND ELEVATION <u>SHI</u> REFERRED TO FIELD PARTY HOLLSH - DARST	
SAMPLE Number	SAN DEI IN P FRON	TO	ST PEN RES BL	ANDA IETRA SISTAI OW	RD TION NCE / 8"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILL
		-						s. mufamí				
/	30	4.5	4	5	5	0		Lunturd			Lime store land base	
								denten				
2	8.0	9.5	20	29	42	12"		and contra		sp	SANd- BA- Meist - QUARTZ STRONY REACTION TO HEL	
								10				
3	13,0	14.5	16	39	5%	14"					CLAYEX SAND BA. MOIST BUARTZ- TRACE OF GRAVEL	
										se	STRONG REACTION TO HOL	
4	180	19.5	17	29	45	16"		Luntur			SAR d- BR- MOIST - STRONG	
		- 10 0						20		sp	Lenctum TO HEL- 90 %0 Fine GRAIN - QUANTZ	

OMPA Roje	NY						5 4		OG		ERING LABORATORY BORING Ren BORING NO. 2-12-1 DATE SI TYPE OF SAMPLES: SPT 3" TUBE CASING USED SIZE DRILLING N	amed MW- heet <u>2</u> of <u>5</u> _ Core
		BORING								1	CASING USED SIZE DRILLING N BORING BEGUN BORING COMPLETED	
	ER LEVE	.L								1	GROUND ELEVATION REFERRED T	0
DATI											FIELD PARTY	DAT
V										1		
SAMPLE Number	SAM		ST PEN	ANDA	R 0 T 1 0 N	TAL 46 TH DVERY	RQD	DEPTH IN FEET	H LOG	и 0	SOIL / ROCK	DRILLER
NUM	IN F		RES	0 W	NCE	LE.	%	FEET	R A P	S N	IDENTIFICATION	NOTES
	FRON	TO	81	I I								
								20 -				
								=				
_					2							
								. 1				
				1						-		
~	230	24.5	12	19	35	15"		1		\vdash	Sand- BR- moist. STRang	
5	10.0	And		1.	100			E			REMETION TO HEL PURCTZ	
											80% Fine GRAIN	
								=				
_								-		8		
										<u> </u>		
		1	FOR		1			1				
6	28.0	29.5	5%			6"					SANd- BR. SATURATEd -	
	[1					Ξ			QUARTE W/S BLOKEN Lime STON FRAS- STRONG REACTION	
						-		-			FRAG- STRONG REACTION	
		1			1						ro Heh-	
			i		1	-		30		SP		
	1	1	¦					3 0				
	i	1			1			-				
		ļ										
-			10		21	an n		Ξ		-		
7	33,0	34.5	X	15	<u>. ~ 1</u>	1 4				<u> </u>	CIAY- BR- MOIST - med to Low plasticity	
				i	ĺ.						Lois prasticity	
	1		1	-	1	1				a		
			I					3				
								-				
			<u> </u>						K U	1		
			1							-		
					-					-		
8	380	39.5	7	9	12	16"		3		-	SHAME AS - 7 TRACE OF	
<u> </u>	1	11.0			1	1					V-Finc SANd	
				1	Ì			-				
			i		1	ļ		40				
		3.25 H						10				
		CASING		CER 4	•							
		CORE F	UCK		3"					I		
		CASING			5 6 "						RECORDER	

Ì.,

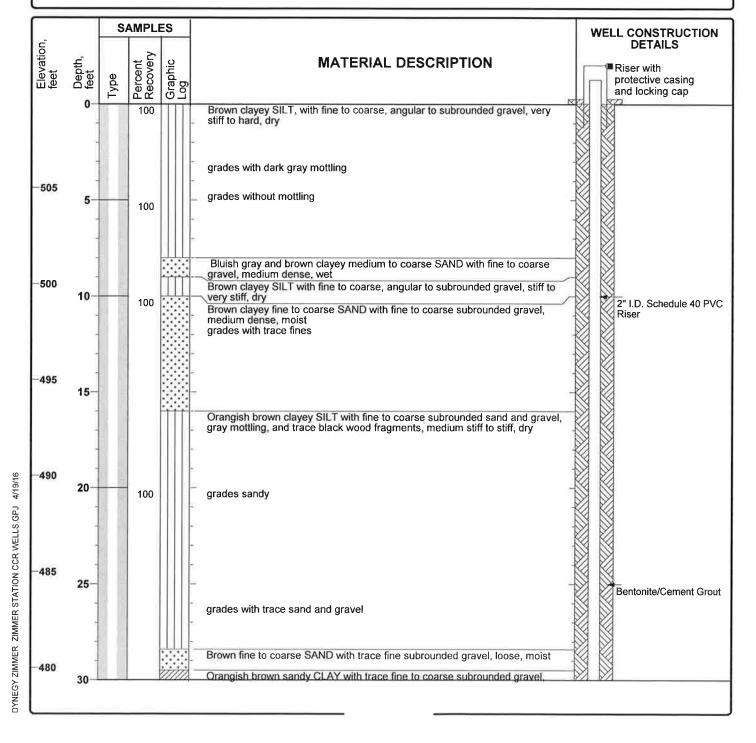
, KOTE	ст	_						L	OG	OF	ERING LABORATORY BORING Ren BORING NO. Z-124 DATE S TYPE OF SAMPLES: SPT 3" TUBE	amed MW-8 هه
COORD	NATES			_						-	TYPE OF SAMPLES: SPT 3" TUBE	CORE
LOCA	TION OF	BORING	. .						8	1	CASING USED SIZE DRILLING	
WATE	RLEVE					~				1	BORING BEGUN BORING COMPLETE GROUND ELEVATION REFERRED	
TIME	_									1		0.
DATE]	FIELD PARTY	Rig
										r	· · · · · · · · · · · · · · · · · · ·	1
	SAM	PLE	ST	ANDA	RD	ΞĚ	RQD	DEPTH IN FEET	Log	6	SOIL / ROCK	DRILLER
MPL		ТН ЕЕТ	PEN	ETRA	TION	NGTAN	01	1N *	Ŧ	0	·	
SAMPLE Number	FRON			.ow	/	LE BEC	70	PÉET	4	5	IDENTIFICATION	NOTES
	FROM	το	80		í •	0			-			
								40				
								2				
								. 5			109-6	
								_				
a	1120	44.5	2	14	ما	16'`			1	-	CIA+- BR- wet-med to how	
	TOIU	CITE	5	6		10		1			plasticity	
										CL		
								-			BOTTOM 10"	
								<u> </u>			CLAYEN SAND- BA- SATURATES	1
								8			100 % Fine GRAM - QUARTZ	
										sc		
						1		-				
10	48.0	49.5	5	10	16	18"					CINYEY SAND- BR- SATURATE	8
j					1						CIAYEY SAND- BR-SATURATE QUANTZ	
								- 2				
					ł			-	1	SC		
				-				30		-		
			T	Ť	Ţ.					-		
		i		i —	1.	1			3	-		
								-	4			
1					1				1			
11	\$3,0	54.5	12	15	15	16					SAND- BR- SATURATED	
				İ	i			50			QUARTZ- med TO Fine GRAM	
		-							1	50		1 million
				1					1	20		
				-		1			1			
									ł			
				1	i							
								- 3		-		
		1000		1		10			1	-	SAND- BR- QUARTE - SATURA UN TRACCOF PEAGAAJE	Fred
12	58.0	59.5	12	15	22	15			1	-	MY TRACCOF TRAGANJE	
									1	SN		
					1					pa		
									1	-		
		3.25 H					•	60-	1	-		
		CASING		CER 4								
		CORE R										
	ALM/	CASING		3	5 "							

WATE TIME DATE	ER LEVI								_		WER SERVICE CAPORATION EERING LABORATORY F BORING Renamed MW-8 BORING NO. 2-12 DATE SHEET 4 OF TYPE OF SAMPLES: SPT 3" TUBE CORE
TINE		BORIN	G:							1	
DATI		EL								1	BORING BEGUN BORING COMPLETED GROUND ELEVATION REFERRED TO
				- 550100						1	Det
	٤				-]	FIELD PARTY RIG
SAMPLE Number	OEP	PLE TH EET	RE		RD	TOTAL LENGTH RECOVERY	RGD %	DEPTH IN FEET	AAPH LOG	s v n	
	FRON	то 	0.0	LOW	/ 6-	-			-	-	
								60			
			-			1				_	
				-	-			1			
								. 1			
											SAWD- BR- SATURATED
13	63,0	64.5	8	10	12	10"		- 4			Med TO FINE GRAIN - GUANTZ
							~			SP	
				1	1					21	
								Ξ			
								=		_	
								3			
			a		-			TT I			SAME AS 13 - STRONG REACTION TO HEL
4	68.0	69.5	ð	10	15	14				_	Reaction to HeL
								E	ł		
1					ļ			E			
			_					70	1	_	
- 3							1	171	ł		
f	1				1			1	t		
								·	F		
1-	720	745	6	10	110	(n 11	I	וחוויווייוייין	ł		6. 1
	19.9					10		11	t	1	SAND- BR- QUANTZ. SAFURATEd
3									Ĺ		N PIE GREEP
	î					1		1	ł	_	
-1									ł	_	
		1						TT	ł		
ţ			1			T			Ľ	i	
Ī									ŀ		
	28.0	74.5	6	16	24	15"		T	ł		SAME AS 15
1		1					_		t		
								11	Ę		
l	ļ	1	i			i		TT	F	_	
-	6"x 3	.25 H	S A			1			ŀ	+	
	нж с	ASING A	DVANC	ER 4	• E						
	NQ C NW C	ORE RO	ск	3							

Ŋ	
010	

÷.

PROJE	LCT			_					.0G		EERING LABORATORY BORING BORING NO. 27 ¹² Date Type of Samples: SPT3"Tube	Renamed MW-8 SHEET <u>S</u> OF <u>S</u> CORE
Loc	TION O	BORIN	G1						-	1	CASING USED DRI	LING MUD USED
14/ 4 7	ER LEVI	. 1									BORING BEGUN BORING COM	PLETED
TIM									-	ł	GROUND ELEVATION REFE	
DAT	E									1	FIELD PARTY	Rig
	SAM	PLE	ST		RD	- 2	RQD	DEPTH	LOG	5		
19 L E 19 E A	0 6 1	ртн	PEN	ETRA	TION	VETAL		111	Ĩ	0	SOIL / ROCK	DRILLER'S
SAMPLE Number	IN P	TO	RE	515TA . 0 W	NCE	TO RECO	%	DEPTH IN FEET	RAP	n s	IDENTIFICATION	NOTES
	FROM	1	81							-		
			-			1		80 -				
_					-			1 3	1			
								× 5				
						1 1						
17	83,0	84,5	16	27	43	13		4 4			SITTI SANd + GAMUEL- BI	c
								3			SATURATEd - QUARTZ- 1"	·
					1					-	MAX Size - AngulAR -	
			1	1		L		3		GM		
								1 3				
				-								
								-				
				-				1 4		-		
18	88.0	89.5	In	14	15	12"		3			SAND- BR- SATURATEd-	
102	I		1	1	1						TRACE DE FINGES - STRANS	
					1	-		1 2			REACTION TO HOL - TRACE	
	1		1		Į.			3			OF FILes	
					1			90		SW		
	4		1					1 3		SW		
	1		1		i							
10	ha							1 3				
14	43.0	94.5	10	14	16	14					SAME AS 18"	
	1				ĺ			1 3				
	i		i		1				6 3			
							ii					
												1
								-				
	1				1			Ξ				
											STOPped Hole 96.1	
								=			INSTALLED WELL	
								=				
				ļ								
	1			1				Ξ				
	c"] 3.25 н	<u>د م</u>		I							
		D.20 M Casing /		CER 4								
	1	CORE R										
	NW	CASING			"							
	l sw	CASING		6	н			1			RECORDER	

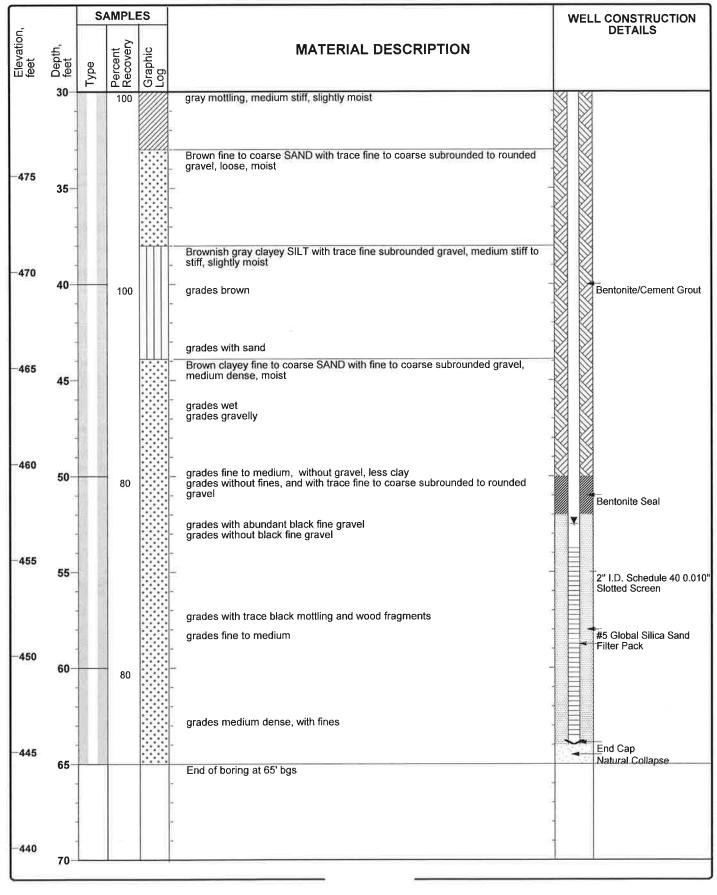

۰) اللہ

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-10

Sheet 1 of 2

Date(s) Drilled	12/10/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	65.0 feet
Date of Ground Measurement	^{lwater} 12/21/1	5		Sampler Type	Sonic Sleeve	Surface Elevation	509.36 feet, msl
Depth to Groundwater	52.5 ft bgs			Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	512.18 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-lnch
Type of Sand Pack	#5 Silica S	and		Well Completi at Ground Sur		rotective casing.	
Comments				1			

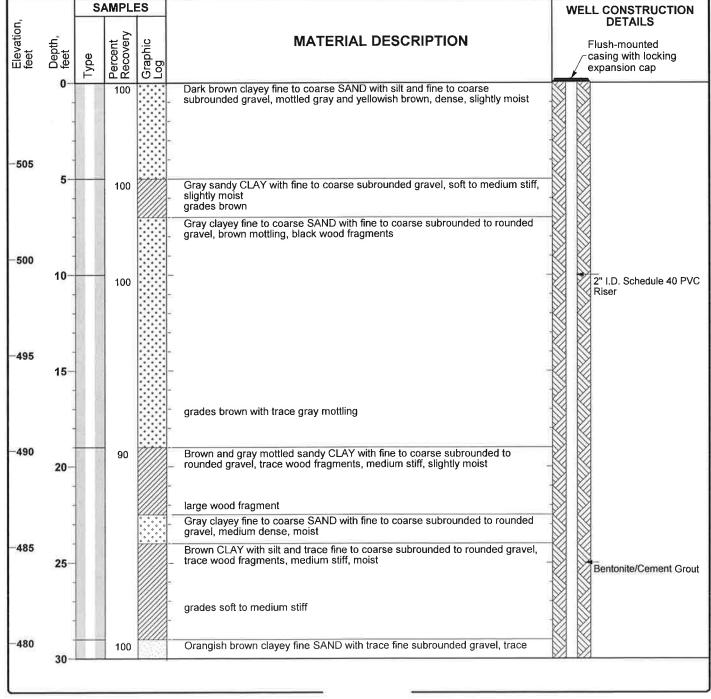


Project Location: Zimmer Station

Project Number: 60442412

Monitoring Well MW-10

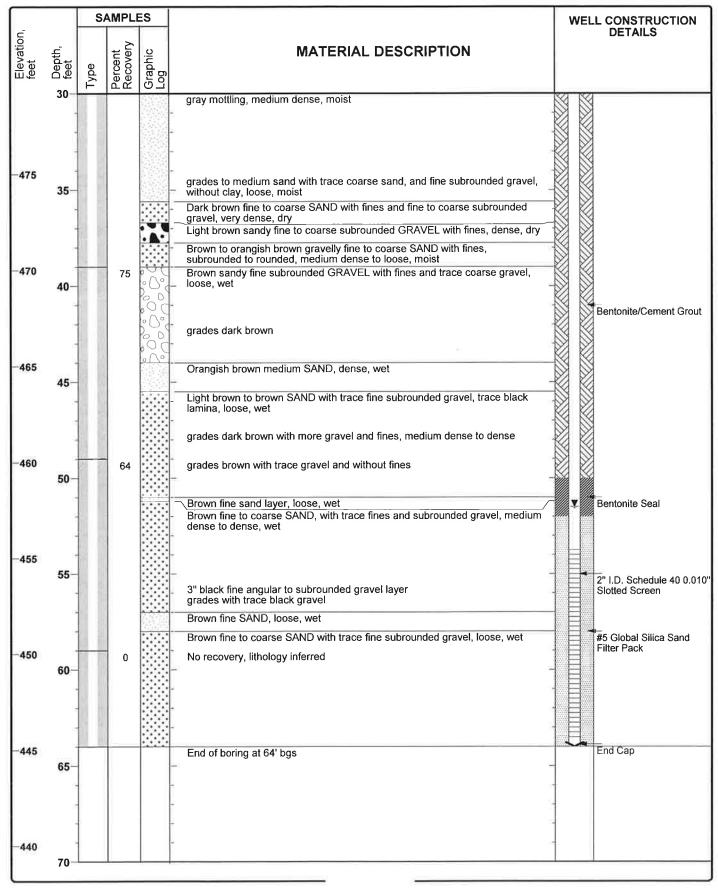
Sheet 2 of 2

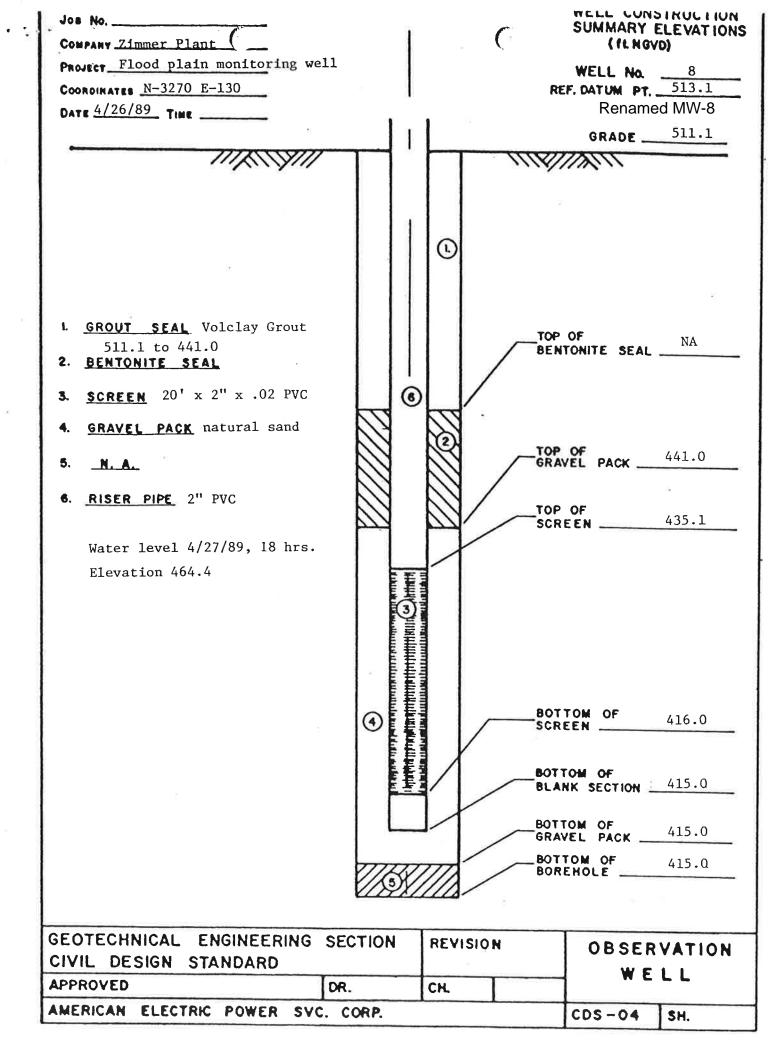


Project: Dynegy Project Location: Zimmer Station

Monitoring Well MW-11 Sheet 1 of 2

Project Number: 60442412


Date(s) Drilled	12/2/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	64.0 feet
Date of Ground Measurement	water 12/21/1	15		Sampler Type	Sonic Sleeve	Surface Elevation	509.18 feet, msl
Depth to Groundwater	51.5 ft bgs			Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	508.87 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completi at Ground Sur		rotective casing.	
Comments							



Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-11

Sheet 2 of 2

		mm	- 11 -	PI	rat	- 8					BORING NO. 2-11" DATE 4-26-89	Renamed MW-
LOCA WATE TIME DATE		BORING	Floc 8.0 1:00 -27-	89 89	plai.	• M	[1170	TORIN	1 4	s11	BORING BEGUN 4-26-89 BORING COM GROUND ELEVATION 511.1 REFER FIELD PARTY HOWCII - DANST	DAT
NUMBER	SAM DEP IN F FROM		PEN RES	ANDA ETRA SISTA. OW	RD T10H NCE / 6"	TOTAL LENGTH RECOVERY	Rad %	DEPTH IN FEET	GRAPH LOG	L S C S	SOIL / ROCK IDENTIFICATION	DRILLER
	25	4.0	2	5	8	15"		-		CL.	Clay- BR- moist - med to Low plasticity	
2	7.5	9,0	3	5	8	18.		_			SAME AS 1	
								10-				
3	125	14.0	3	4	5	18.					SITT/ CIA+ - MUTTi-coloned med to how plasticity	Bn.
									-	ci		
	17.5	19,0	3	4	5	18					SAME AS L	
		3.25 F Casing			 ₊"	r		20 -			·	

Compa Proje	NY						9			OF	ERING LABORATORY BORING NO. ZIT DATE RE TYPE OF SAMPLES: SPT 3"TUBE CASING USED	enamed MV
									-	4	TYPE OF SAMPLES: SPT3 TUBE CASING USEDSIZEDRILLING	CORE
Loca	TION OF	BORING	G 1								BORING BEGUN BORING COMPLETE	NOU USED
WATE	R LEVE	L								1	GROUND ELEVATION REFERRED	
TIME										1		
DATI	E		- 11 11]	FIELD PARTY	Rig
											·	
SAMPLE Number	SAM DEP IN F FROM		PEN	ANDA ETRA SISTA	RD T10H NCE / 6"	TOTAL LENGTH RECOVERY	RGD %	DEPTH IN PEET	GRAPH LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLE
		1		1						-		
					1			20-		-		
								1				
					1					-	Joh G "	
5	22.5	24.0	2	3	4	19"		1 E			Clay- yellowish BR- moist TO Wet- med TO Low PLASTICITY	
-		ic no	1.		1	1.0					wet- med TO Low PLASTICITY	
								<u>,</u>		CL		
											Cottom 9"	
											Clay- GRAY- Wet- med to tow plasticity	
											Low PLASTICITY	
				1 °				=		cu		
										-		
6	275	29.0	2	3	3	18"		Ξ			FLAX- GAR to WET - med To	
<u></u>	A.1.5	1.1.0			1	10					ElAy - GAAY - WET - med To how plasticity	
			1		1			=		12		ļ
					<u> </u>			4				
				1				=				
-								30-		<u> </u>		
	1	1	t –		1					<u> </u>		
				i						-		
7	325	34.0		2	3	18.					SAME AS 6	
-/	1	01.0	1	10	1	10						
			1	!								
5	1	Î	i	1	Ī	1						1
								_				
				Î	l I			E		-		
								4		-		
					1							
				1	1			-				
8	375	39.0	20	26	12	16"					Soud + GOALDI- GAAJ- BA-	
u_	arres 100		1	1 ale	1	1		1 1			SATURATEd - QUARTZ- Rounded	
											SAND + GRAVE - GRAJ-BR- SAFURATEd - QUARTZ- ROUNDED Is"MARSIER - W/ FINCS	
								-				
					1					61		
					i				B)			
			l	L	1			40-				
		3.25 H										
	нж (ASING		CER 4	ł –							
	NO.		000-					1	8			
		CORE R	OCK		5"					I		

Compa Proje	NY									NEERING LABORATORY OF BORING Renamed MV BORING NO. 2117 DATE SHEET 3 OF TYPE OF SAMPLES: SPT 3" TUBE CORE
LOCA	TION OF	BORIN	G 1							CASING USED SIZE DRILLING MUD USED
WATE	R LEVE									BORING BEGUN BORING COMPLETED BORING COMPLETED
TIME										
DATE	-									FIELD PARTYRIG_
SAMPLE Number	DEP IN F	PLE TH EET TO	PEN	ANDA ETRA SISTAI	RD FION NCE / B	TOTAL LENGTH RECOVERY	RQD %	DEPTH In Feet		SOIL / ROCK DRILLE IDENTIFICATION NOTE
								40_		
0						14.4				
9	425	44,0	10	15	13	12			-	SAND- BR- QUARTZ- MOIST
								- T	5	
								1	1	
								Ξ		
						-				
								-		SAND. BR- QUART - SATURATEd
10	47.5	44,0	8	12	17	12"		Ē	1	SANG. BR- QUART - SALURAVEd
								=	SI	0
			1					Ξ		
									-	
	1							50-		
					Ì			8 		1
		1110		177		14"			_	SANd + GARYEL- BA-SAFURATEd
1	52.5	54.0	IS		10	14				QUARTZ - Rounded - 1"MAX Size W/ FINES - STRONG REACTION TO HEL
			1			1				Her
								E	6	
					*			E.	-	
								Indu		
								-		
12	57.5	59.0	12	14	16	15"		Ē		SAND- BR- SATURATEd.
									_	QUARTZ- TRACE OF PEA GRAVE
								linden linden	5	P STRONG REALTION TO HEL
								F	-	
			1					60-	_	
		3.25 H Casing		A						

Job Ni Compa Proje	0 NY CT						6				WER SERVICE CORFORATION EERING LABORATORY BORING NO. 7117 DATE Type of Samples: SPT 3"TUBE Casing used Size Drilling BORING BEGUN BORING COMPLE	enamed MV Sheet <u>4</u> of Core
		BORIN	111						-	1	CASING USED SIZE DRILLIN	G MUD USED
WATE	RLEVE					-					BORING BEGUN BORING COMPLE GROUND ELEVATION REFERRED	
TIME												
DATE	-				***						FIELD PARTY	Ric
SAMPLE Number	SAM DEP IN F	тн ЕЕТ	ST PEN RES BL	ANDA IETRA SISTAI	RD T10N NCE / 6	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	r s c s n	SOIL / ROCK IDENTIFICATION	DRILLE
								40_		-		
								40_				
		<u> </u>	-									
13	62.5	64.0	16	17	11_	13				-	GRAVELLY SITTY SAND- BR- GATURIFIED- QUARTZ - 34" MAK Size - STRUEL REALTION	
								E E		-	MAR Size - STRING REALTION	
				1				1 3			to HeL	
					-			Ξ		-		
				1						-		
								=				
								1 =				
14	67,5	64.0	29	39	31	16				-	SANd+ GRAJE 1- BA. SATUAN	Ted
					į –					-	QUARTZ- 1"MAX Size - up FINCS - STRONG REACTION	
				1	1	1		1 =			TO HeL	
								- E		-		
					1					-		
			1	1	-	1		70-		-		
			<u> </u>						1			
15		17.1-	1.	200	11-	0"		=	i			
15	72,5	74,0	12	18	40	Ø		-			CLAYEY SANd + GAAVET BA. SATURATEd - 1"MAX Size	
j ĝ				6							Rounded - QUARTZ -STRONG	
	İ	1	i	i	1		-		1		REACTION TO NEL	
		L				-		-		60		
		1		1				E		-		
			1									*
						-						
11	m-	79.0	111	20	0	9"		=	1	-	SAME AS 15	
16	TIIS -	17.0	119	100	38	14					JAME A> 13	
								-		-		
					1					-		
				1		1			İ			
		1 3.25 ⊦		1	I	-	L	80-	1	-		
	I HW C	CASING	Anvan		44	1		1	ł.	4	1	4

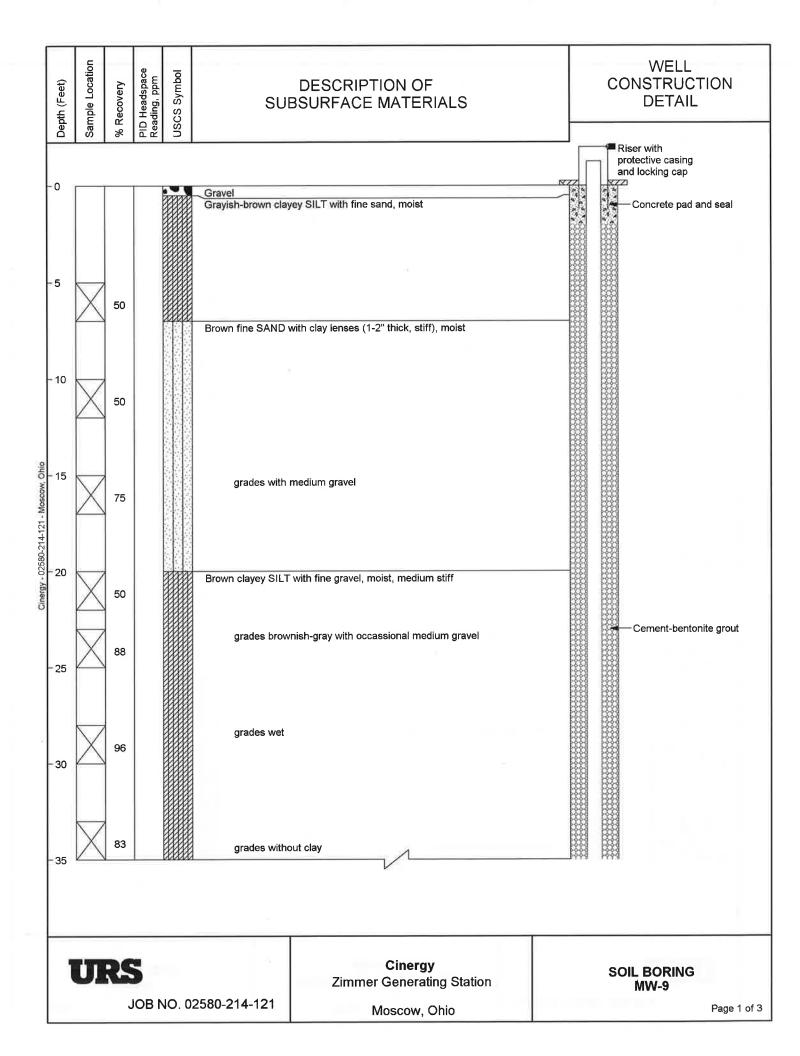
on No	CE-5 /87 D			_							ERING LABORATORY BORING	enamed MW-1
OMPA	NY										BORING DATE 3" TUB	SHEET 5 OF 5
NOJE	INATES								⇒`		TYPE OF SAMPLES: SPT 3" TUBE	CORE
-	TION OF					S. CART			-	Ĩ.	CASING USED SIZE DRIECH	NG MOD 03ED
			•:								BORING BEGUN BORING COMPL	ETED
	R LEVE	L									GROUND ELEVATION REFERRE	
DATE									-		FIELD PARTY	Rig
w ec	SAM	PLE	ST	ANDA	RO	н ж Х	RQD	DEPTH	LOG	n	SOIL / ROCK	DRILLER
SAMPLE	DEP		PEN	ETRA	TION	TAL NGT	01	DEPTH IN FEET	X	U S	IDENTIFICATION	NOTES
NUL NUL	IN F		MES	.0₩	/ #*	LE REC	%	FEET	R A	2	IDENTIFICATION	NOTES
	FROM	10		T	/ °					-		
								80-				
										-		
17	825	QU n	8	10	13	11"					Genully Sand- BR. SATUR.	nred
	Dais	040	1	11	1-					1	QUARTZ \$4" MAX SIZT - ROUR	ded
	1										ud FINES + BLACK LIGNITE	
											STRONG REACTION TO HEL	
_		-			-							
								2		-		
								1 3		-		
								1		-		
				1								
18	87.5	89.0	12	11	14	13"					GRAVELLY SAND - BR. SATURAT QUARTE- KOUNDED - 34" MAK UN FIRES - STRONG REALTION (TO MEL	d
	1	Ren-		1	1		(*)] 3			QUARTZ- Kounded - 1/4" MAK	512
				-	1						4 FINCS - STRONG REALTION	-
	1							1 3	1		TTO MEL	
									1	F		
	1				I.			1	1	-		
		1	1	1	1		1	1 -	1			
			-		I		<u> </u>					
	1		1		1					_		
			-	-				-	- C		STOPPEd Nole - 89,9 AND INSTALLED Z'OB. Well	
	1								1	-	INSTAILED ZOB well	
				1			<u>;</u>			1		
	1	1		ŝ					1	-		
		1	1	1	1		1		1	1		
									1		*	
									1	-	·	**
					-			-		-	1111	
						ģ.			-	-		
-			-		-	-	1			-		
									7	-		
	1		1	1	1			_	-			
									E			
					Ì		1		Ë			
							1		-	-		
	н₩	3.25 Casing	ADVAR	NCER	4"							
		CORE			3"				1			
	I NW	CASING			5 6"		_	-			RECORDER	

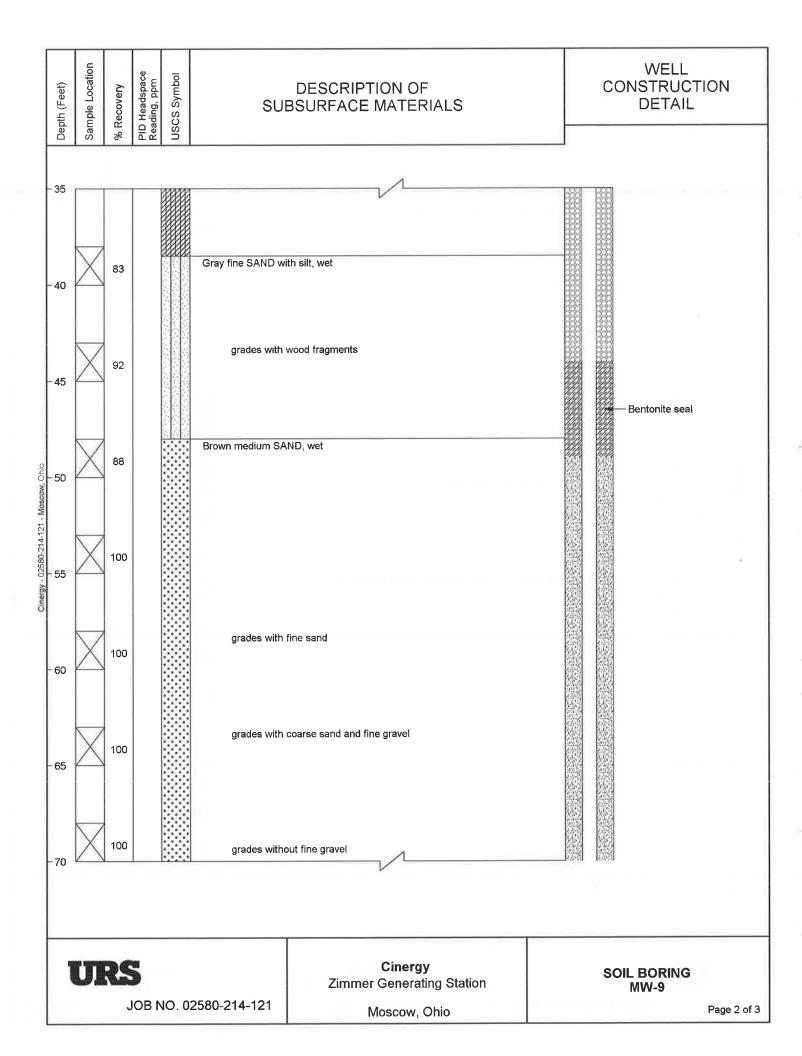
a B

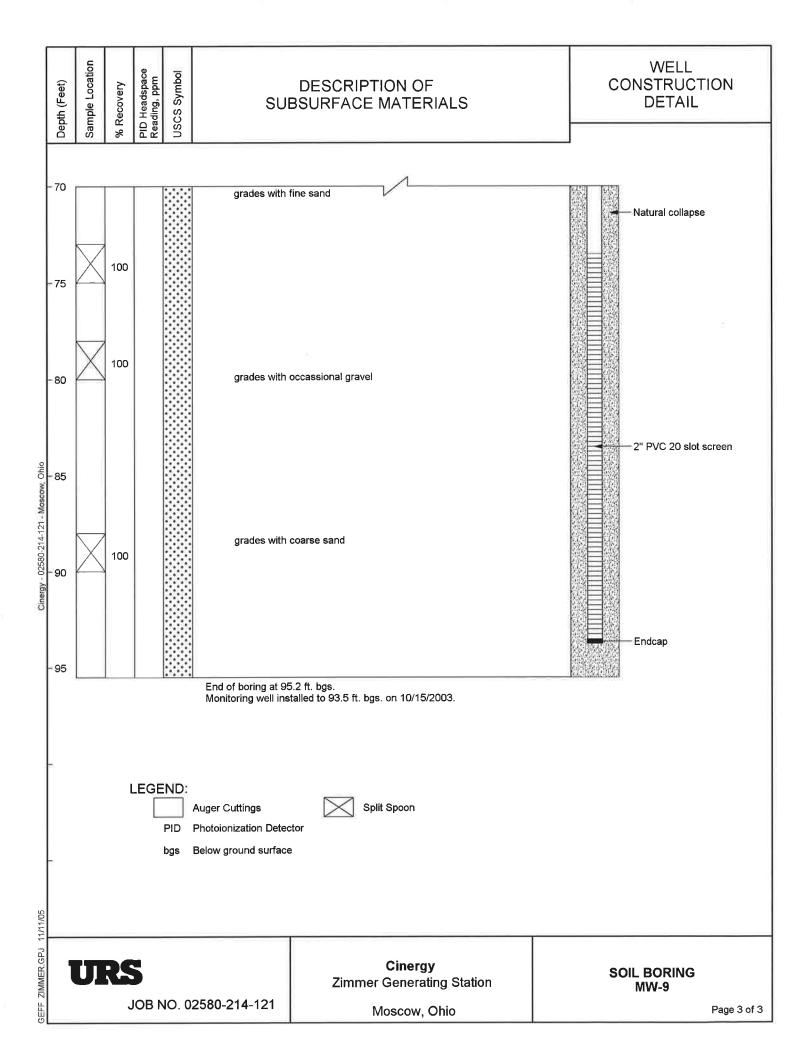
LOCATION OF BORING: LOCATION OF BORING: Flood plain monitoring wells WATER LEVEL 28.5 TIME 10:00 DATE 4-20-89 SAMPLE STANDARD TRADARD TR	PROJECT COORDINA LOCATIC WATER TIME DATE DATE	T ZH NATES ION OF R LEVE SAM O E P IN F FROM	M- 3: BORING	270 G: F100 28.5 1.00 1.20- ST PEN RES BL		RD TION NCE	mon	ITOR	inc we	//s	c s	TYPE OF SANPLES: SPT 3" TUBE CASING USED SIZE DRILLING BORING BEGUN <u>4-20-89</u> BORING COMPLETE GROUND ELEVATION <u>SH.1</u> REFERRED FIELD PARTY <u>HOLLS II</u> - <u>DAREST</u> SOIL / ROCK	CORE MUD USED D TO
Cooperations of Borney Floor from the interval of the second form the interval of the second form the second		NATES ION OF R LEVE SAM OEP IN F FROM	N- 3: BORING L 2 IO 4 PLE T M E E T TO	270 G: F100 28.5 1.00 1.20- ST PEN RES BL		RD TION NCE	mon	ITOR	inc we	//s	c s	TYPE OF SANPLES: SPT 3" TUBE CASING USED SIZE DRILLING BORING BEGUN <u>4-20-89</u> BORING COMPLETE GROUND ELEVATION <u>SH.1</u> REFERRED FIELD PARTY <u>HOLLS II</u> - <u>DAREST</u> SOIL / ROCK	CONE MUD USED TO C RIG DRILLE
WHITE LEVEL 28.5 J Date (J) (J) (J) (J) (J) (J) (J) (J) (J) (J)		SAM OEP IN F FROM		500 	ANDA IETRA SISTAL	RD TION NCE					c s	GROUND ELEVATION <u>SHI</u> REFERRED FIELD PARTY <u>HOLLS II - DARST</u> SOIL / ROCK	TO (
WHERE LEVEL 28.5 J Date (J)(20) GROUND ELEVATION Statustance Total Statustance Statustance Statustance Statustance Statustance Statustance Date Statustance		SAM OEP IN F FROM		500 	ANDA IETRA SISTAL	RD TION NCE					c s	GROUND ELEVATION <u>SHI</u> REFERRED FIELD PARTY <u>HOLLS II - DARST</u> SOIL / ROCK	TO (
The $Darc$ $Dars$		SAM OEP IN F FROM		500 	ANDA IETRA SISTAL	RD TION NCE					c s	SOIL / ROCK	Rig_
Date $(4.20, 57)$ Filte PART Shull - Datest Re- Image: Standard of the standard		SAM OEP IN F FROM	PLE TH EET TO	ST PEN RES OL	ANDA ETRA SISTAI	R D T I O N N C E / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	U	SOIL / ROCK	Rig_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 3					R D T I O N N C E / 6"	TOTAL LENGTH RECOVERY	R G D %	DEPTH IN FEET	GRAPH LOG	U		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 3					TION NCE / 6"	TOTAL LENGT RECOVE	%	IN FEET	6 A A N			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 3					/ 6-		%	FEET	C R A	5	IDENTIFICATION	NOTE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 3										-		
2 8.0 9.5 20 29 42 12" 5 m d - Ba - maist - Quantz 5 M - Ba - maist - Quantz 5 M - Ba - maist - Quantz 5 M - Ba - maist - Quantz 5 M - Ba - Mal 2 13.0 14.5 16 39 5% 14" 4 18.0 19.5 17 29 45 16" 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony Learning To Nel. 90 20 5 M - Ba - Maist - Steony 16 M - Ba - Maist - Steony 17 29 45 16" 5 M - Ba - Maist - Steony 18 M - Ba - Maist - Steony 17 M - Ba - Maist - Steony 18 M - Ba - Maist -		30	4.5	4	E								
2 8.0 9.5 20 29 42 12" 5 Sand - Ba- maist - Quantz 5 Strong Reneticing TO Hal 3 13.0 14.5 16 39 5% 14" 4 18.0 9.5 17 29 45 16" 5 Sand - Be- maist - Steony Learning To Hal 5 Sand - Be- maist - Steony 10 Sand - Be- maist - Steony 10 Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- M		30	4.5	4	e					+	-		
2 8.0 9.5 20 29 42 12" 5 Sand - Ba- maist - Quantz 5 Steary Remeticing TO Hal 3 13.0 14.5 16 39 5% 14" 4 18.0 9.5 17 29 45 16" 5 Sand - Be- maist - Steary Remeticing To Hal 5 Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- Maist - Steary Sand		30	4.5	4	-				Ξ				
2 8.0 9.5 20 29 42 12" 5 Sand - Ba- maist - Quantz 5 Strong Reneticing TO Hal 3 13.0 14.5 16 39 5% 14" 4 18.0 9.5 17 29 45 16" 5 Sand - Be- maist - Steony Learning To Hal 5 Sand - Be- maist - Steony 10 Sand - Be- maist - Steony 10 Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- Maist - Sand - Be- M		30	4.5	4	-		1		× H	ŀ	_		
2 8.0 9.5 20 29 42 12" 5 Sand - Ba- maist - Quantz 5 Steary Remeticing TO Hal 3 13.0 14.5 16 39 5% 14" 4 18.0 9.5 17 29 45 16" 5 Sand - Be- maist - Steary Remeticing To Hal 5 Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- maist - Steary Sand - Be- Maist - Steary Sand		30	4.5	4	1	1				t			
Strong Rene Tim TD Her Strong	26				0	5	0		-	-	_	Lime store lord base	
Strong Rene Tiem TD Her Strong Rene Tiem TO Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To H	26			1					3	ł			
Strong Rene Tiem TD Her Strong Rene Tiem TO Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To H	26					1	1			ŀ			1
Strong Rene Tiem TD Her Strong Rene Tiem TO Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To Her Strong Rene Tiem To H	2 6								E	ľ			
STRONY REACTION TO HOL SP STRONY REACTION TO HOL STRONY REACTION TO HOL	2 6								E				1
STRONY REACTION TO HOL SP STRONY REACTION TO HOL STRONY REACTION TO HOL	2 6									ŀ			
STRONY REACTION TO HOL SP STRONY REACTION TO HOL STRONY REACTION TO HOL	2 6					1			Ξ	ł			
Strong Rene Tim TD Her Strong	26								F				
5P 5P 5P 5P 5P 5P 5P 5P 5P 5P		8.0	9.5	20	29	42	12"			-	_	SANd- BA- Meist - QUANTZ	<u> </u>
3 13:0 14:5 16 39 5% 14" 3 13:0 14:5 16 39 5% 14" 4 18:0 19:5 17 29 45 16" 50 6" x 3.25 HSA r 20							5		3	ł		STRONG REACTION TO HOL	
3 13.0 14.5 16 29 5% 14" Chayex Sound Bar moist Duna T2- Tance of Garwel Strong Reaction To Hol Strong				1		1			E	Ī	2		
3 13.0 14.5 16 29 5% 14" Chayex Sound Bar moist Duna T2- Tance of Garwel Strong Reaction To Hol Strong					l	!			10 -=				
4 18.0 19.5 17 29 45 16" 6"x 3.25 HSA V 20 Bunching Reaction TO Hal Strong				ĺ		l			1	+			
4 18.0 19.5 17 29 45 16" 6"x 3.25 HSA V 20 Bank T2- TRACE OF GRAVEL STRong Reaction TO Hal STRong					i			i		ł			
4 18.0 19.5 17 29 45 16" 6"x 3.25 HSA V 20 Bank T2- TANCE OF GRAVEL STRong Reaction TO Hal STrong										t			
4 18.0 19.5 17 29 45 16" 6"x 3.25 HSA V 20 Bank T2- TANCE OF GRAVEL STRong Reaction TO Hal STrong						59			E				
4 18.0 19.5 17 29 45 16" 6"x 3.25 HSA ~ 20 Binn T2- Tance of Ganvel Strong Reaction TO Hal Strong	3 13	13,0	14.5	16	39	1.4	14					Chayex Sand BA. Moisr	
4 18.0 19.5" 17 29 45 16" 5 5 5 5 5 6" x 3.25 HSA V 20					1	İ	l		E	ł		CLARTZ- TRACE OF GRAVE	
4 18.0 19.5 17 29 45 16" Som d - Be - moist - STeong Lenctur TO ACL - 90% Fine GRAIN - QUARTZ SP				1		1	1			ł		PIRONG REACISON TO HOL	
4 18.0 19.5 17 29 45 16" Som d - Be - moist - STeong Lenctur TO ACL - 90% Fine GRAIN - QUARTZ SP									1	1	se.		
4 18.0 19.5 17 29 45 16" 50x d - Be - maiss - STEONS Lenctur TO ACL - 90% Fine GRAIN - QUARTZ 50 50 50 50 50 50 50 50 50 50									Ξ				62
Elenction TO HCL- 90%0 Fine GRAIN - QUARTZ 6"x 3.25 HSA							-						
Elenction TO HCL- 90%0 Fine GRAIN - QUARTZ 6"x 3.25 HSA						1			111	ł			
Elenction TO HCL- 90%0 Fine GRAIN - QUARTZ 6"x 3.25 HSA				1	1	1			E I	t			
6"x 3.25 HSA V 20- FINE GRAIN - QUARTZ	4 18	18.0	19.5	17	29	45	16"			[_	SANd - BE- MUIST - STRONG	
6"x 3.25 H 5A ~ ZO - ZO									1			REACTION TO HEL- 90%0	
6"x 3.25 HSA ~ ZO -		-				<u> </u>			1	ł	SP	FINE GRAIN - QUARTZ	
6 X 3.23 H 34			1						i E	ł			
HW CASING ADVANCER 4"		c" .			· · · ·		4	-	20-				
			CASING	ADVAN	CER 4	, "							

Compa Proje Coord	DORDINATES										BORING NO. 2-12-1 DATE S TYPE OF SAMPLES: SPT 3" TUBE CASING USED SIZE DRILLING I BORING BEGUN BORING COMPLETE	Renamed MW-8 DATE SHEET 2 OF 5 SPT 3" TUBE CORE SIZE DRILLING MUD USED	
WATE	R LEVE	:L									GROUND ELEVATION REFERRED	TO	
DATE	5]	FIELD PARTY	Rig	
SAMPLE Number	DEP IN F		ST PEN RES BL	ANDA ETRA ISTA OW	RD T10N NCE / 6"	TOTAL LENGTH RECOVERY	rq d %	DEPTH IN FEET	GRAPH LOG	א כא ט ר	SOIL / ROCK IDENTIFICATION	DRILLE	
								20 —					
				,				. 1					
১	23.0	24.5	12	19	35	15''		- Total			SAND- BR- MOIST. STRONG REMETION TO HEL QUARTZ 80% Fine GRAIN		
										81			
								1 m					
6	2B.0	29.5	57,4			6"					SANd- BR. SATURATEd - QUARTZ W/3 BLOKEN Lime STOM	e	
								30			QUARTE W/3 BLOKEN Lime STON FRAS- STRONG REACTION TO HCK-		
	İ									SP			
7	33.0	34.5	18	15	21	ſ4"		30			Clay- BR-moist - med to Low plasticity		
	<u> </u>									a	Low plasticity		
								- Inde		_			
		20 -	0	C	 	1.15		in lea					
8	18.0	39.5	17_	9	12	16"		luntur			SHAME AS - 7 TRACE OF V-Fine SAND		
	6"x	3.25 H	I S A Advant					40-		F			

los N Comp/	0										ERING LABORATORY BORING Ren Boring No. Z-124 Date s Type of Samples: SPT3"Tube	amed MW-8			
ROJE	ст										BORING NO. Z-12 DATE S	HEET 3 OF 5			
	INATES										TYPE OF SAMPLES: SPT 3" TUBE CORE				
	TION OF					_			5	1	CASING USED SIZE URILLING N	UD USED			
<u>. </u>											BORING BEGUN BORING COMPLETE				
WAT	ER LEVE	L.									GROUND ELEVATION REFERRED				
TIM	E									l .		DATU			
DAT	E									I	FIELD PARTY	Rig			
	5 A M		ST	ANDA	RD	т ж	RQD	DEPTH IN FÉET	LOG	5	SOIL / ROCK				
SAMPLE Number	OEP		PEN	ETRA	TION	1AL VE		1N *	Ŧ	0		DRILLER'S			
JUN V	IN F		RES	SISTAI	NCE	10 E 10	%	PÉET	d d	2	IDENTIFICATION	NOTES			
vi 2	FROM	το 1	8 L	0 ₩	/ 6"	- æ			J						
				1											
								40-]						
								-			109-6				
											104-0				
	1										CIA+ BR- wet-med to how				
9	43,0	44,5	5	6	8	16'`					CIA+ BR- WET- med to Low plasticity				
	ł									a.					
									1	CL					
									1		Bostom 10"				
-							-	-	1		CLAYEN SAND- BA- SATURATED 100 90 Fine GRAMI - QUARTZ				
								=	1		100 TO FIRE ORATO - QUARIE				
										sc		ă.			
								. 3							
			-					3		-					
10	48,0	49.5	5	10	16	18"			1		Clayer SAND- BR- SATURATE	a			
								- 3	1		QUANTZ				
										SC	and the second second second second second second second second second second second second second second second				
					1					P					
	1	1	1		1			50							
					1				1		1				
				1											
					ļ				-	-					
-	1			1	1.0	114				-	5 1 22 5 5 5 5 5				
11_	\$3,0	54.5	12	13	13	16				<u> </u>	JAND- BR- SATURATED				
			i i	1	İ			1 3	1		QUARTZ- med TO Fine GRAM				
								-	•	SP					
				1				- 2	1	Pr					
				-		1			j						
					i			-							
								4 - 3		-					
	0	1000		1-	3-	15"				-	SAND- BE- QUARTZ - SATURA UN TRACCOF PEAGUAJEI	red			
L	58.0	57.5	12	1/3	2				1		I TRACCOF ICAGAAJE				
								Ē	1	Sw					
				1	1			1 3	1						
			i					60-							
		3.25 H													
		CASING		CER 4				4	1						
	NQ	CORE R	OCK		5"				1	<u> </u>					
	NW	^ .													

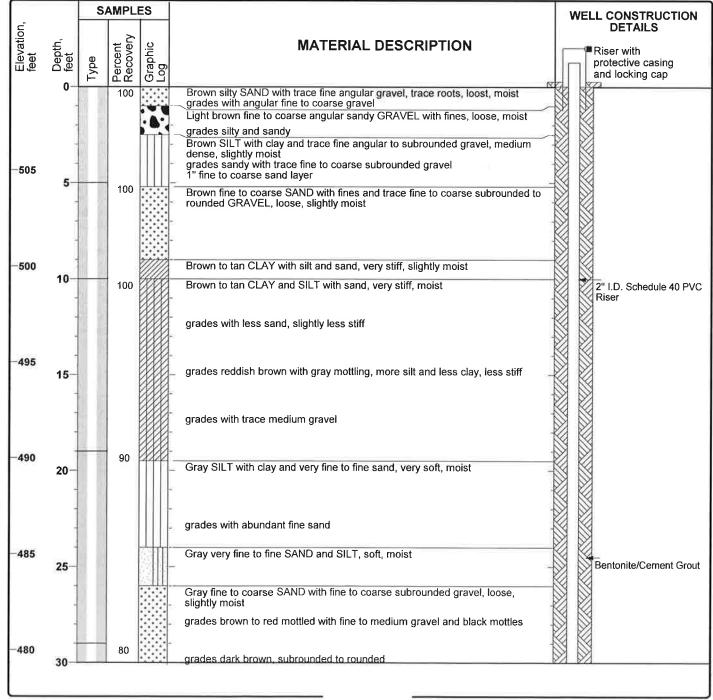

Loca Wat Time			_				2 		_	01	EERING LABORATORY F BORING Rename BORING NO. 2-12 DATE SH TYPE OF SAMPLES: SPT 3" TUBE SIZE DRILLING MU	EET 4 or 5
WAT Time	_	BORIN	_						-	1	CASING USED SIZE DRILLING MU	_ CORE
TIM						_					BORING BEGUN BORING COMPLETED	
_	ER LEVI										GROUND ELEVATION REFERRED TO	
DATE							-					DAT
					-					1 L	FIELD PARTY	Rig
SAMPLE Number	0 E #	PLE T N T E E T T O	5 T P E R R E S 8 L	TANDA NETRA SISTA LOW	RD TION NCE / 6	TOTAL LENGTH Recovery	RGD %	DEPTH IN Feet	GAAPH LOG	ט ר ט ר	SOIL / ROCK IDENTIFICATION	DRILLER' NOTES
										_		
		1	-					60				
					-			ulu ulu				
								- <u> </u>		_		
12	120	64.5	0	10		10"		E			SAND- BR- SATURATEd med TO Five GRAIN - GUARTZ	3
5	60,0	64,3	0	10	14	10		-			med TO FINE GRAIN - QUARTZ	
								Ξ		SP		
								E				
										_		
-			-									
								1				
									[SAME AS 13 - STRONG	
4	68.0	69.5	8	10	15	14"					SAME AS 13 - STRONG REACTION TO HEL	
								Ē	ł			
		1										
									ł			
4	\$					1	1	70	Ĺ	1		
					_				1			
		1						· 1	ł	_		
1		Ī							ł			
5	73.0	745	6	10	16	12"		1	t		SAND- BR- QUARTZ. SAFURA	rid
1	i	Ī		1		i	i	11	Ļ		100 % Fine GAAR	
						-			+			
	Î							=	ł			
	i					Ī		url.	F	i		
									Ľ			
i								E	F			
-								1	ŀ	-		
	78.0	74.5	6	16	24	15"		E	ŀ		Same AS 15	
1				1				_	t			
-				i				ΓT	E			
ł	ļ		i	1		i	l l	T	L			
-	6 4 3	.25 H S	5.4	[F	-		
		ASING A		ER 4"	· F							
	NQC	ORE RO	CK	3								


A	
d fl	


.

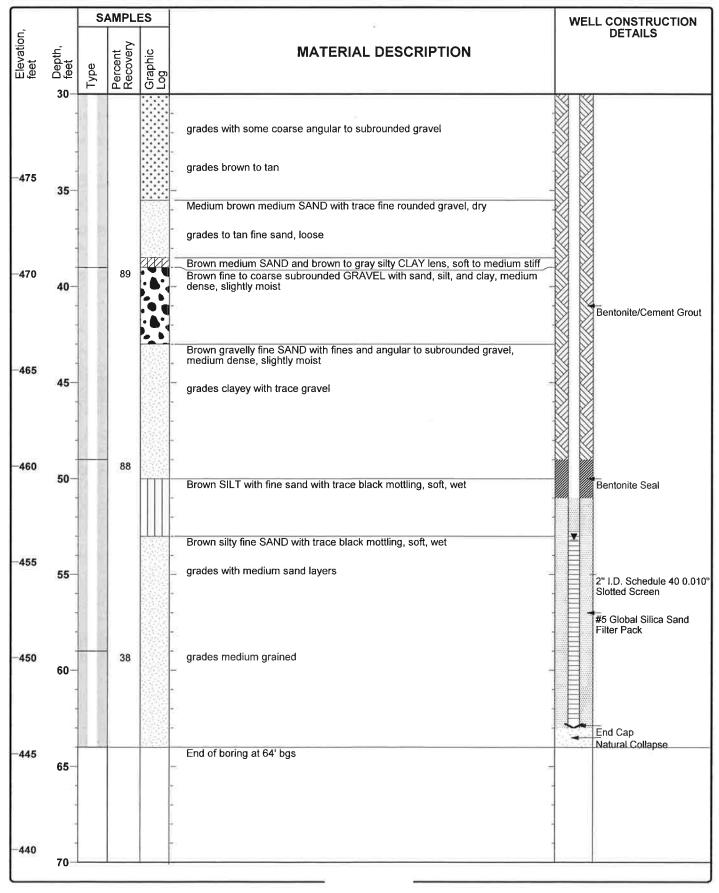
Jos N	o				ŝ						EERING LABORATORY Boring	Renamed MW-8
		4								01	BORING NO. 272 DATE 3" TUBE	Surra San
								-			TYPE OF SAMPLES: SPT 3"TUBE	CORE
		BORIN							-	1	CASING USED DIZE URI	LING MUD USED
_											BORING BEGUN BORING COM	PLETED
WAT	ER LEVI	EL			_					ł	GROUND ELEVATION REFE	
DAT			- 11				-	-			FIELD PARTY	DATUM
					_				-	1		
	-	PLE	51	ANDA	RD		RQD	DEPTH	Loc	5	SOIL / ROCK	
SAMPLE Number	INF	РТН ГЕЕТ	RE	LE TRA SISTA	NCE	NG TAL	0/	1 IN	I	U S		DRILLER'S
S.A.	FROM	то	8	LOW	/ 6"	LE LE	1%	DEPTH IN FEET	C R A	2	IDENTIFICATION	NOTES
	1	1	1	1	T	1						
						-		80			•	
					-			1				
								· - E				
		1		-	1					-	and a first of the second seco	
17	83,0	84,5	16	27	43	13					SITTI SANd + GAMUEL- BI	c
								1 3			SATURATEd . QUARTZ- 1"	r
	-		-	-	-			-			MAX Size - AngulAR -	
								Ξ				
					-	-		1 =		GW		
								1 4				
_					-							
			1	1			i	3				
18	88.0	89.5	11	14	15	12				_	SAND- BR- SATURATEd-	
			1		1			1 5		-	TRACE DE FINGE - STRANS	
								1 14			REACTION TO HOL - TRACE	and the second second
					ł			. 3		-	OF Fines	
		1	1		1			90		SW		
			1					<u> </u>				
	Ì	i i			Î							
			<u> </u>									
10	600	0.10	1.0	1.1		L. P.		1 3		-		
14-	43.0	94.5	10	17	16	14					SAME AS 18"	
					1			1 3				· · · · · · · · · · · · · · · · · · ·
	1		1		1				6 8			
							jj					
								-				
					1			Ξ				
								1 1			STOPped Hole 96.1	
							. 1			-	STOPped Hole 96.1 INSTAILED WELL	
	1				1							
				1	1							
			L	1		-						
		3.25 H Casing										
		CORE R		UER 4								
		CASING		3	,"	1						
		CASING			Н			1			RECORDER	

۰) اللہ .



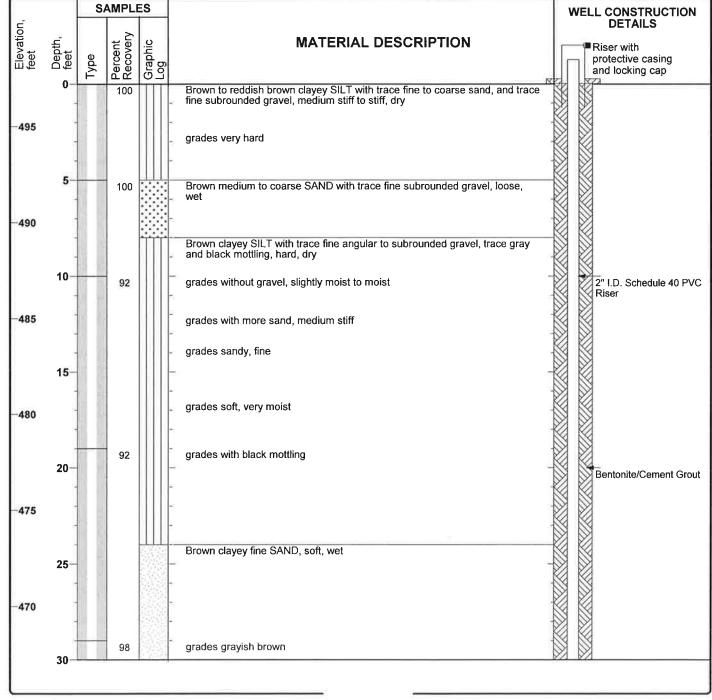
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12 Sheet 1 of 2


Date(s) Drilled Logged By Checked Becky Smolenski Mike Wagner 11/20/15 By Drilling Contractor Drilling Total Depth of Borehole Rotosonic Frontz Drilling 64.0 feet Method Date of Groundwater 12/08/15 Sampler Surface Sonic Sleeve 509.34 feet, msl Measurement Туре Elevation Depth to Hydrated 3/8-inch Bentonite Top of PVC 53.19 ft bgs Seal Material 511.92 feet, msl Groundwater Chips Elevation Diameter of Diameter of Type of Well Casing Screen 6.0 2 Schedule 40 PVC 0.010-Inch Hole (inches) Well (inches) Perforation Type of Sand Pack Well Completion #5 Silica Sand Riser, With locking cap and protective casing. at Ground Surface Comments

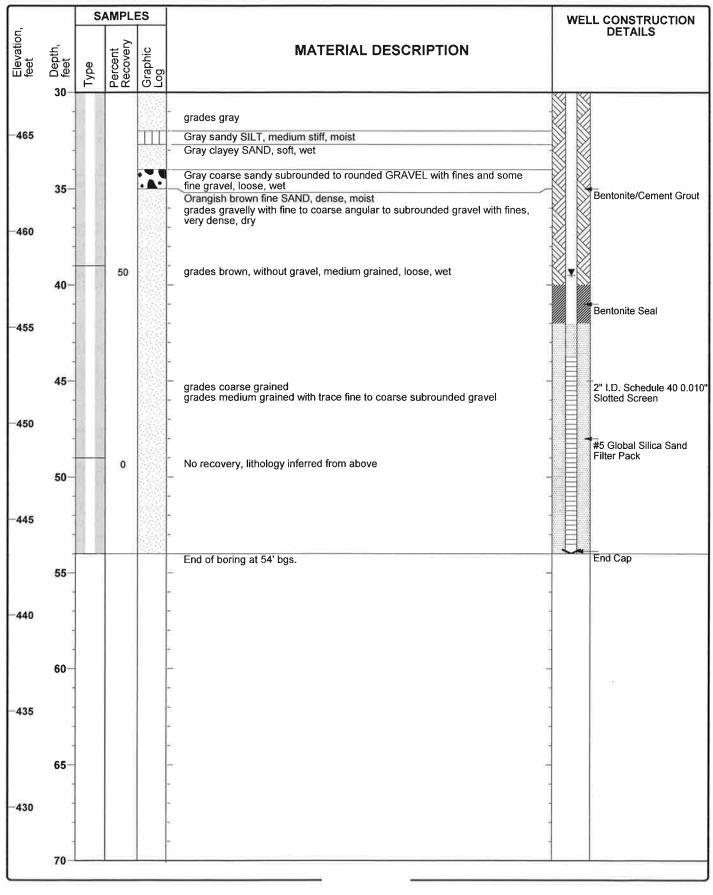
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12


Sheet 2 of 2

Project Location: Zimmer Station Project Number: 60442412

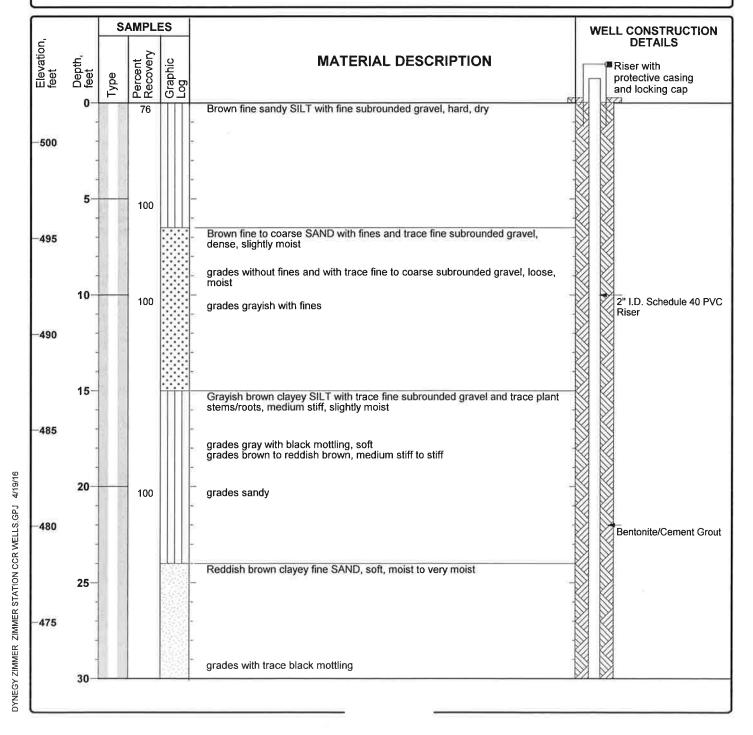
Monitoring Well MW-13 Sheet 1 of 2


Date(s) Drilled	11/24/15			Logged E	ecky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	54.0 feet
Date of Ground Measurement	^{dwater} 12/08/1	5		Sampler S Type	onic Sleeve	Surface Elevation	497.21 feet, msl
Depth to Groundwater	39.51 ft bg	s		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	499.4 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completio at Ground Surfa		rotective casing.	
Comments				11			

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-13

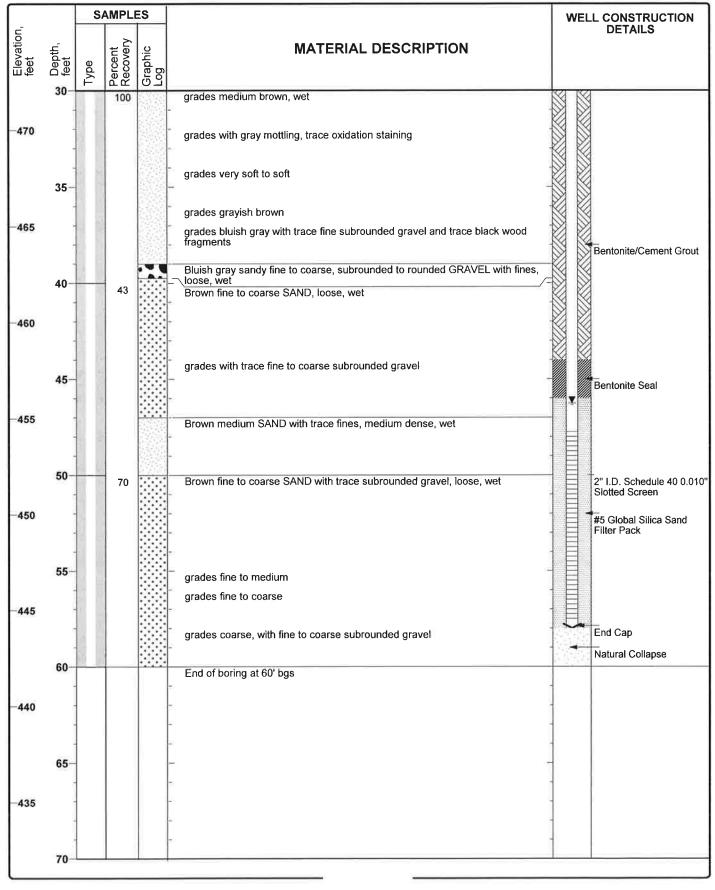
Sheet 2 of 2



Project: Dynegy Project Location: Zimme

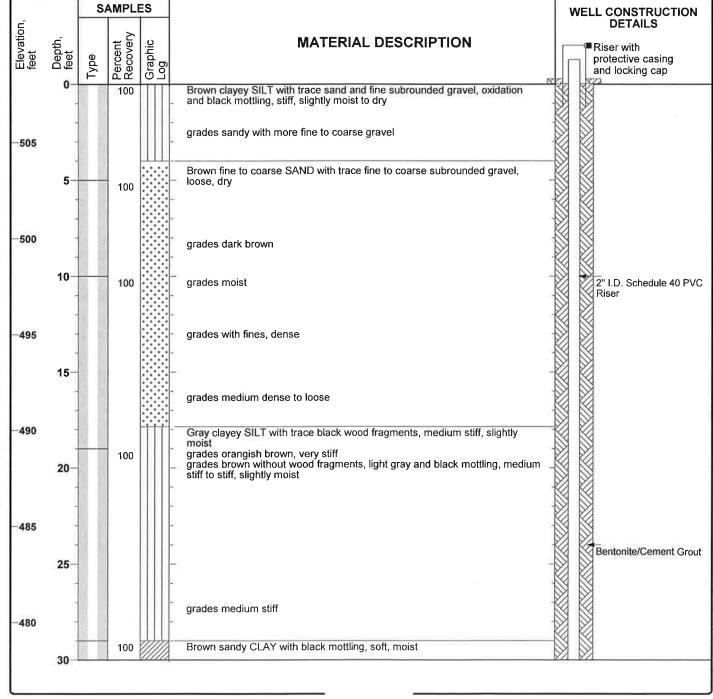
Project Location: Zimmer Station Project Number: 60442412

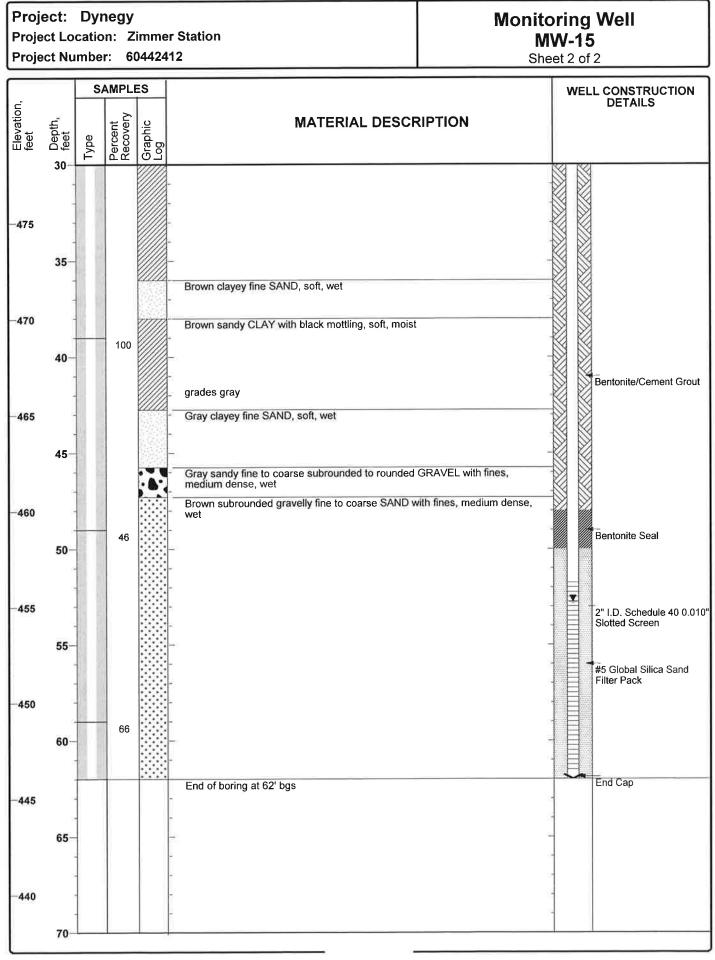
Monitoring Well MW-14 Sheet 1 of 2

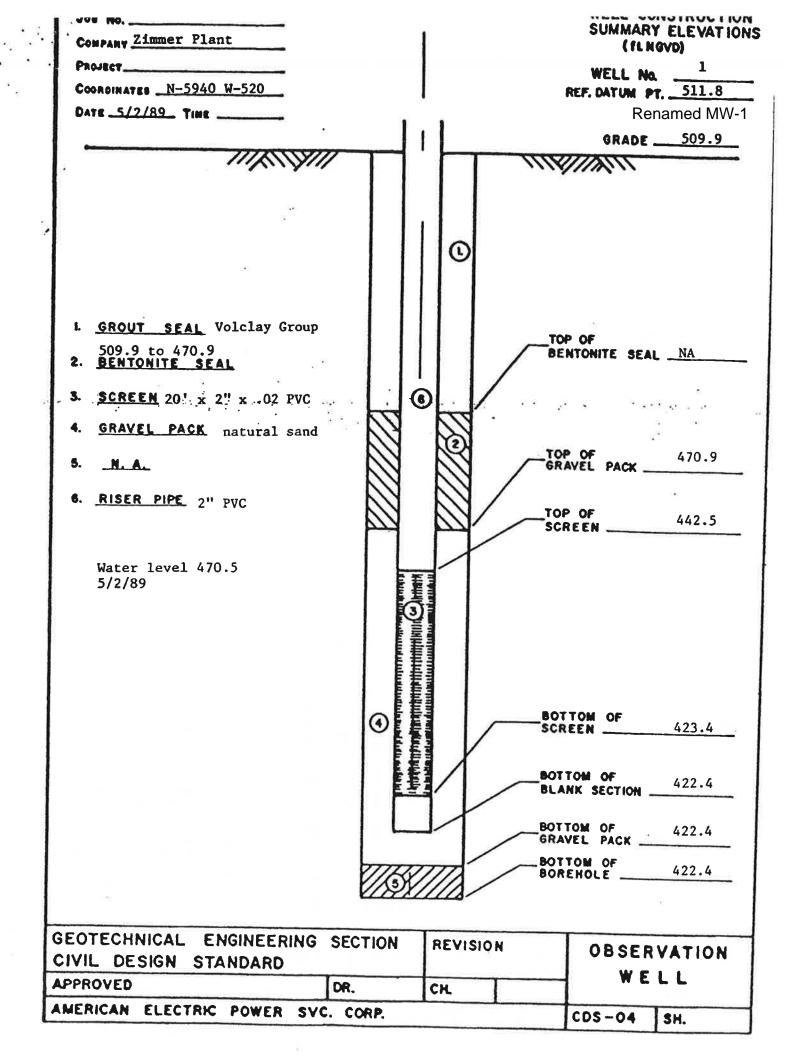

Date(s) Drilled	12/9/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Frontz Drilling	Total Depth of Borehole	60.0 feet
Date of Ground Measurement	^{lwater} 12/18/1	5		Sampler Type	Sonic Sleeve	Surface Elevation	502.06 feet, msl
Depth to Groundwater	46.27 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	503.81 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-inch
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surf		rotective casing.	
Comments							

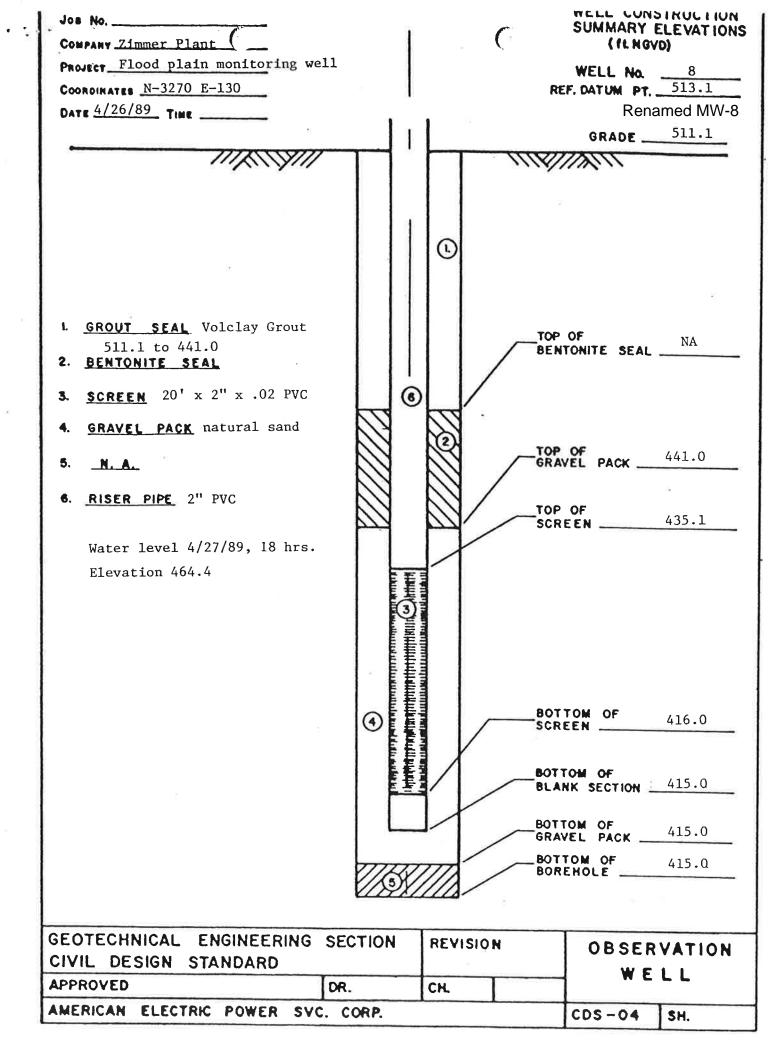
Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-14

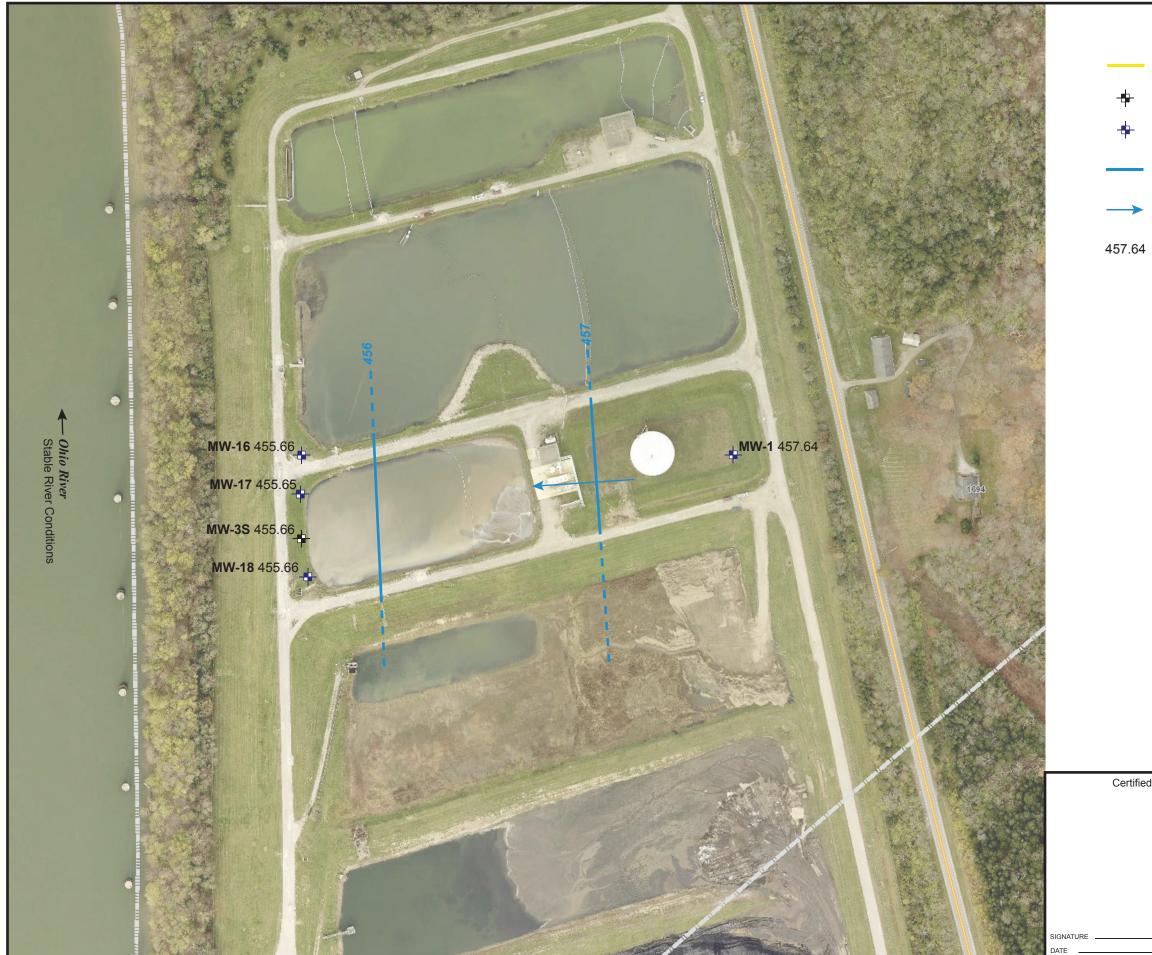

Sheet 2 of 2



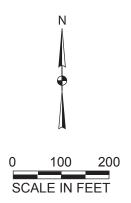

Project: Dynegy Project Location: Zimmer Station Project Number: 60442412


Monitoring Well MW-15 Sheet 1 of 2

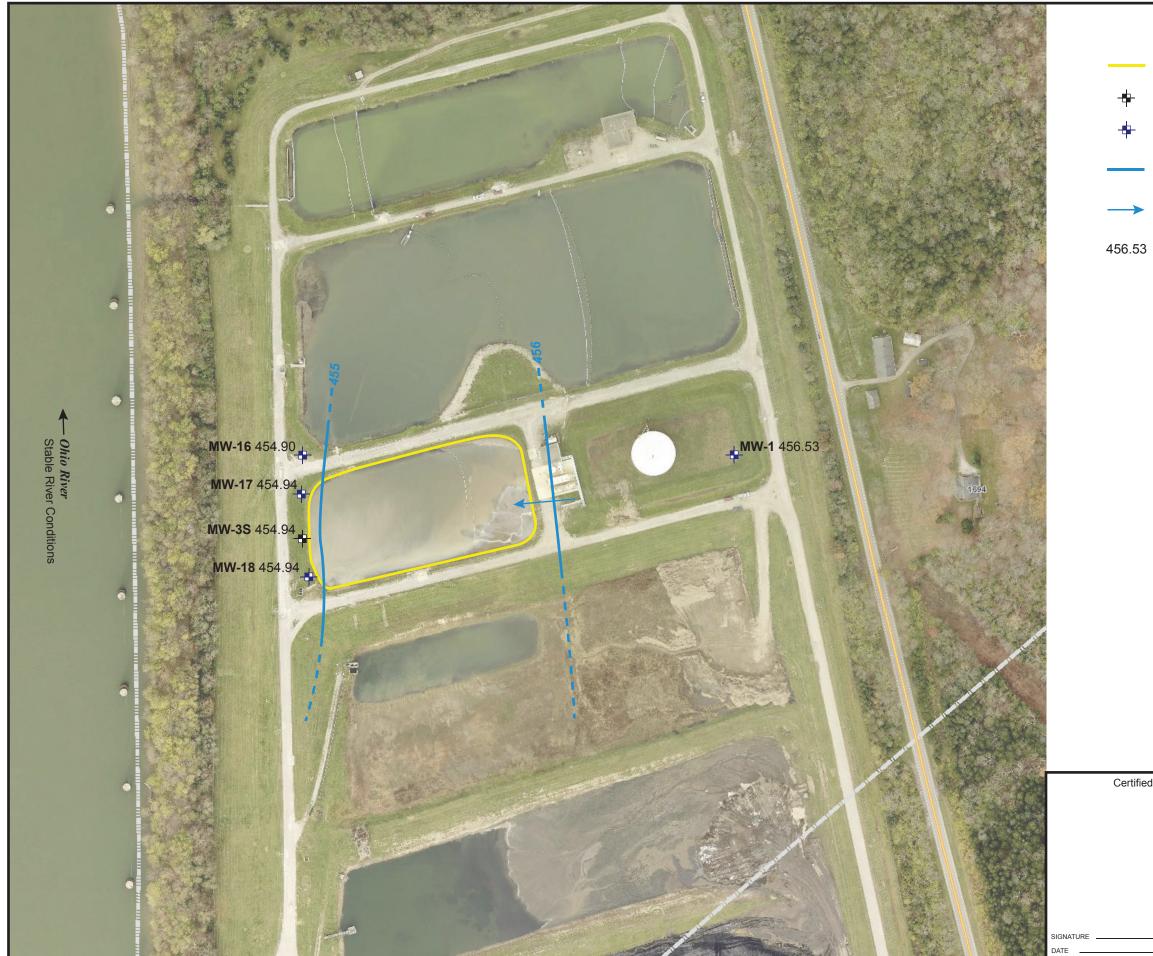
Date(s) Drilled	11/25/15			Logged By	ecky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor F	rontz Drilling	Total Depth of Borehole	62.0 feet
Date of Ground Measurement	^{lwater} 12/18/1	5		Sampler S Type	onic Sleeve	Surface Elevation	508.04 feet, msl
Depth to Groundwater	52.77 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	510.58 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Completion at Ground Surfa		otective casing.	
Comments							



APPENDIX C3 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW


EXISTING MONITORING WELL LOCATION

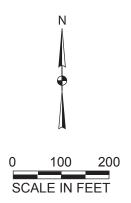
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

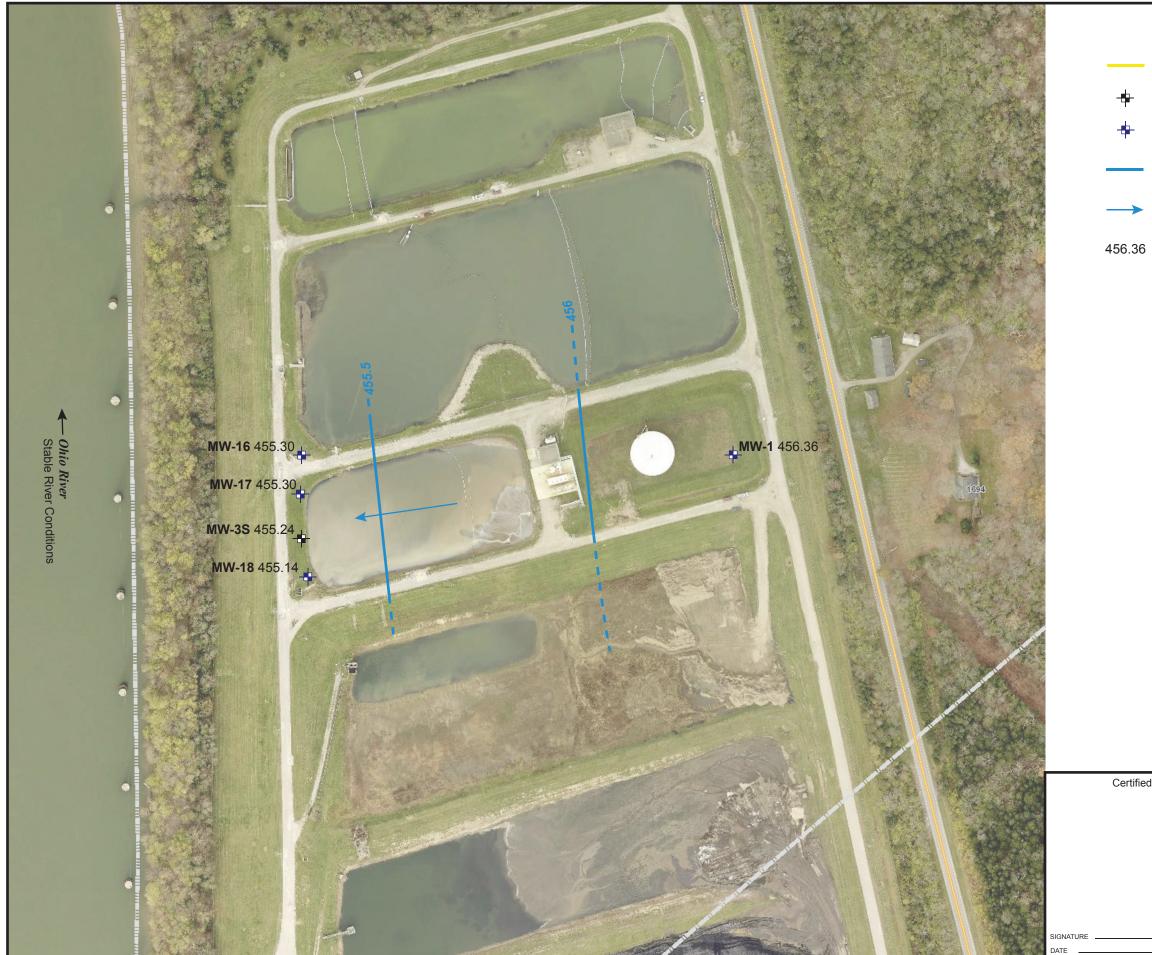
➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED AUGUST 31, 2016

ed By:	Dyneg	Y		Zimmer Station t County, Ohio
		FIGU	RE 1	
	GRO	UNDWATER	SURFACE	MAP-
		AUGUST	31, 2016	
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)
	CCR SA	AMPLING AN	ND ANALYSI	S PLAN
	DATE	REV NO.	DWG. BY	CHKD. BY
	12/16/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM


EXISTING MONITORING WELL LOCATION

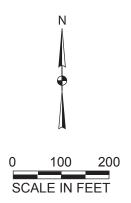
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

ed By:	Dyneg	Y		Zimmer Station t County, Ohio
			RE 1	
	GRO	UNDWATER	SURFACE	MAP-
		SEPTEMBE	ER 26, 2016	
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)
		AMPLING AN		
	DATE	REV NO.	DWG. BY	CHKD. BY
	12/15/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM


EXISTING MONITORING WELL LOCATION

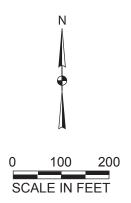
DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

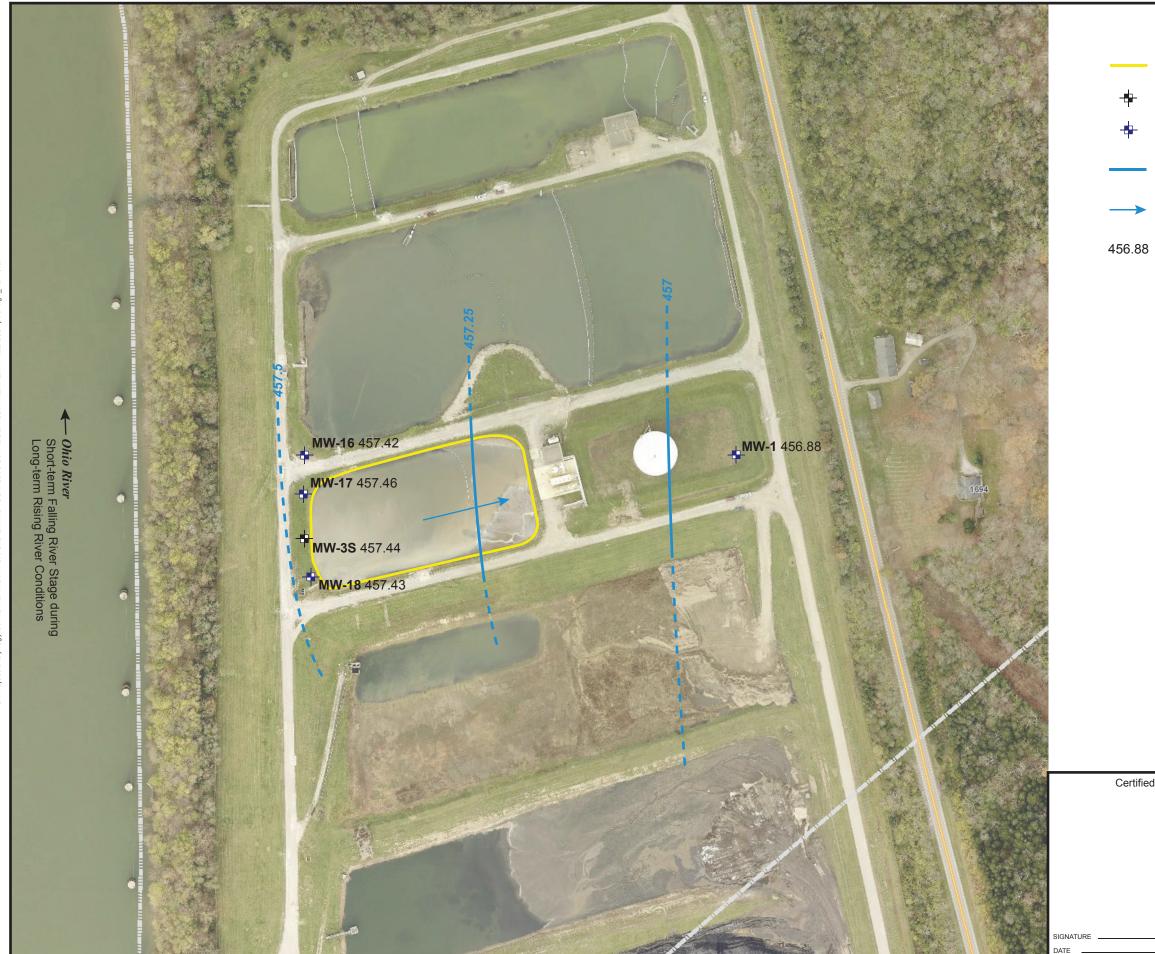
➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED OCTOBER 12, 2016

ed By:	Dyneg	Y		Zimmer Station t County, Ohio
		FIGU	RE 1	
	GRO	UNDWATER	SURFACE	MAP-
		OCTOBER	R 12, 2016	
	COAL PIL	E RUNOFF	POND (UNI	T ID: 125)
	CCR SA	AMPLING AN	ID ANALYSI	S PLAN
	DATE	REV NO.	DWG. BY	CHKD. BY
	12/16/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM


EXISTING MONITORING WELL LOCATION

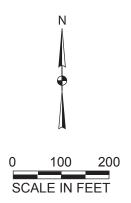
DOWNGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

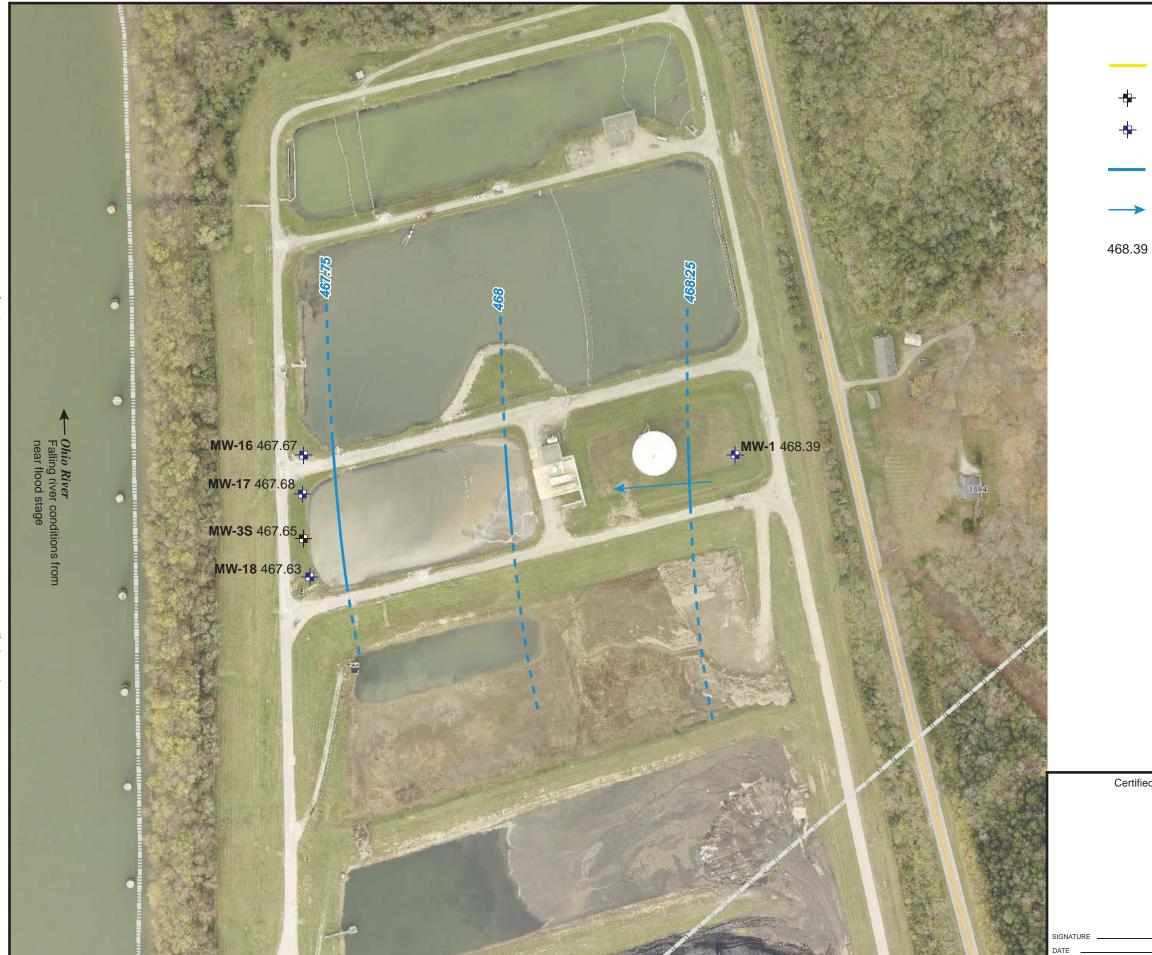
➤ GROUNDWATER FLOW DIRECTION

456.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED NOVEMBER 16, 2016

ed By:	Dyneg	Y		Zimmer Station t County, Ohio
	GRO COAL PIL	FIGU UNDWATER	R 16, 2016 POND (UNI	T ID: 125)
	DATE	REV NO.	DWG. BY	CHKD. BY
	12/16/16	0	ALW	MAW
	JOB NO. 604	142412		AECOM


EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

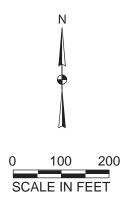

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

ed By:	Zimmer Station Clermont County, Ohio FIGURE 1 GROUNDWATER SURFACE MAP- DECEMBER 12, 2016 COAL PILE RUNOFF POND (UNIT ID: 125) CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	DWG. BY	CHKD. BY	
<u> </u>	01/05/16	0	ALW	MAW	
	JOB NO. 60442412			AECOM	

EXISTING MONITORING WELL LOCATION


DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

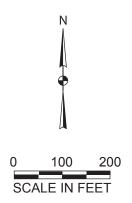

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

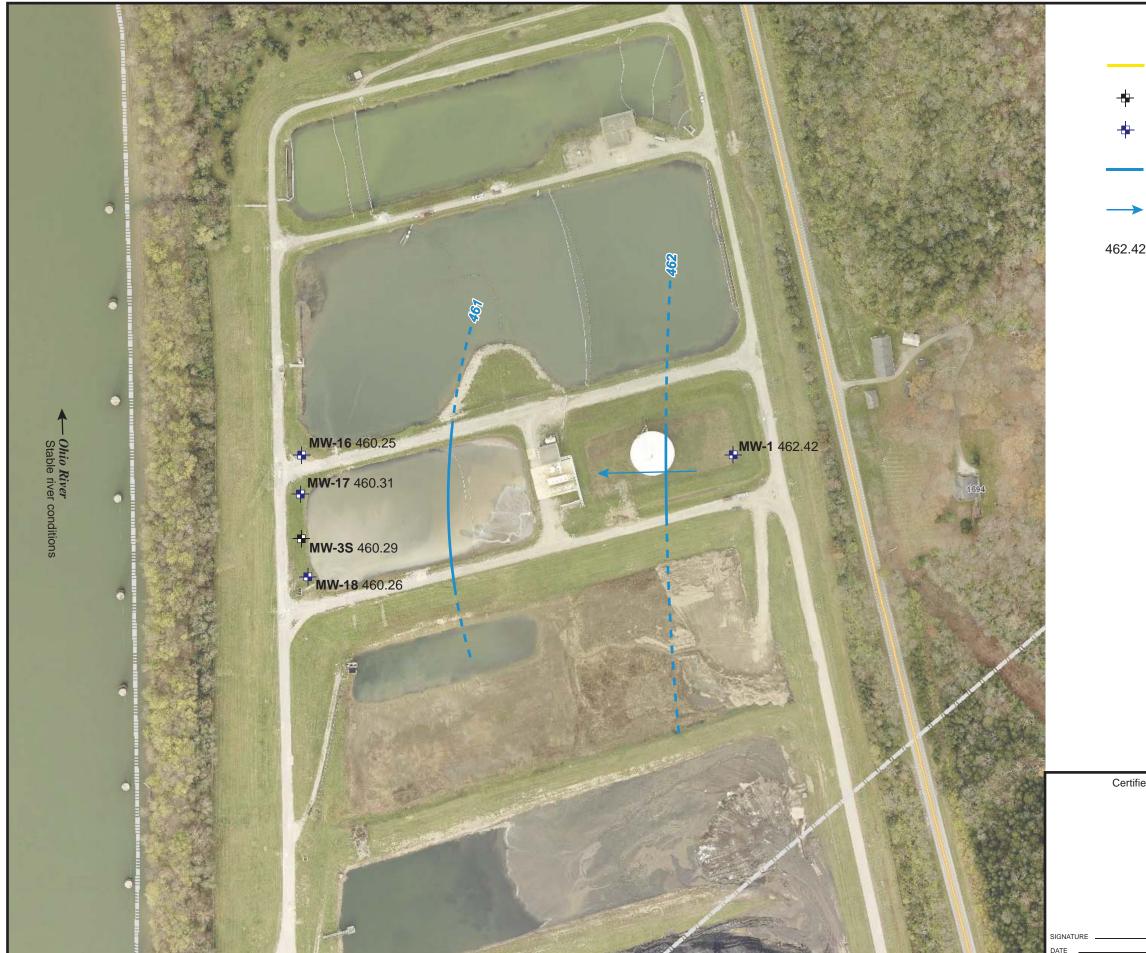
AERIAL SOURCE: CLERMONT COUNTY, OH GIS

ied By:	Dyneg	Y		immer Station t County, Ohio	
	FIGURE 1 GROUNDWATER SURFACE MAP- MARCH 8, 2017 COAL PILE RUNOFF POND (UNIT ID: 125) CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/07/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

EXISTING MONITORING WELL LOCATION


DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

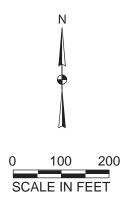

➤ GROUNDWATER FLOW DIRECTION

465.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

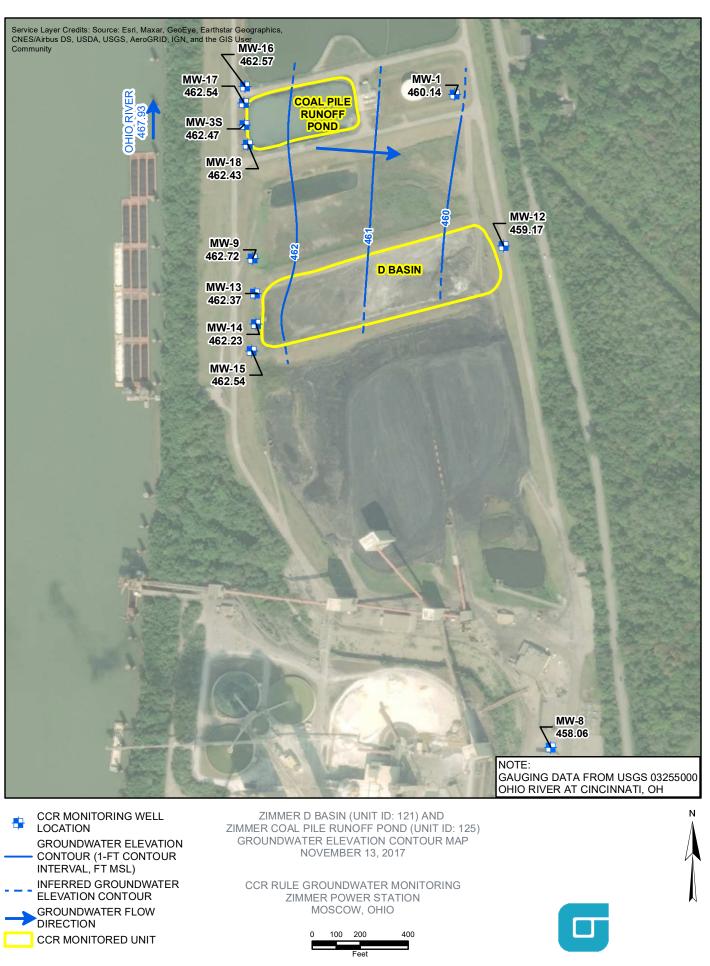
AERIAL SOURCE: CLERMONT COUNTY, OH GIS

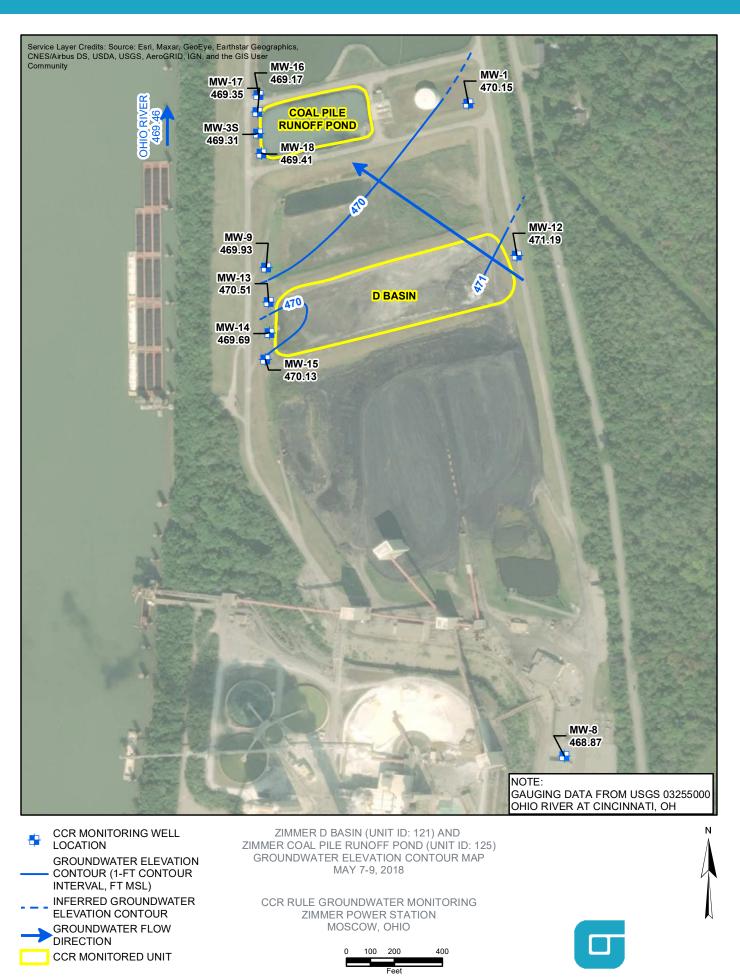
ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	JUNE 8, 2017				
	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/07/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

EXISTING MONITORING WELL LOCATION


DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)


➤ GROUNDWATER FLOW DIRECTION


462.42 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

AERIAL SOURCE: CLERMONT COUNTY, OH GIS

ed By:	Dyneg	Y Y		Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	JULY 13, 2017				
	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/07/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

1/28/2020 6:07:38 PM

ZIMMER POWER STATION MOSCOW, OHIO

Feet

400

100 200

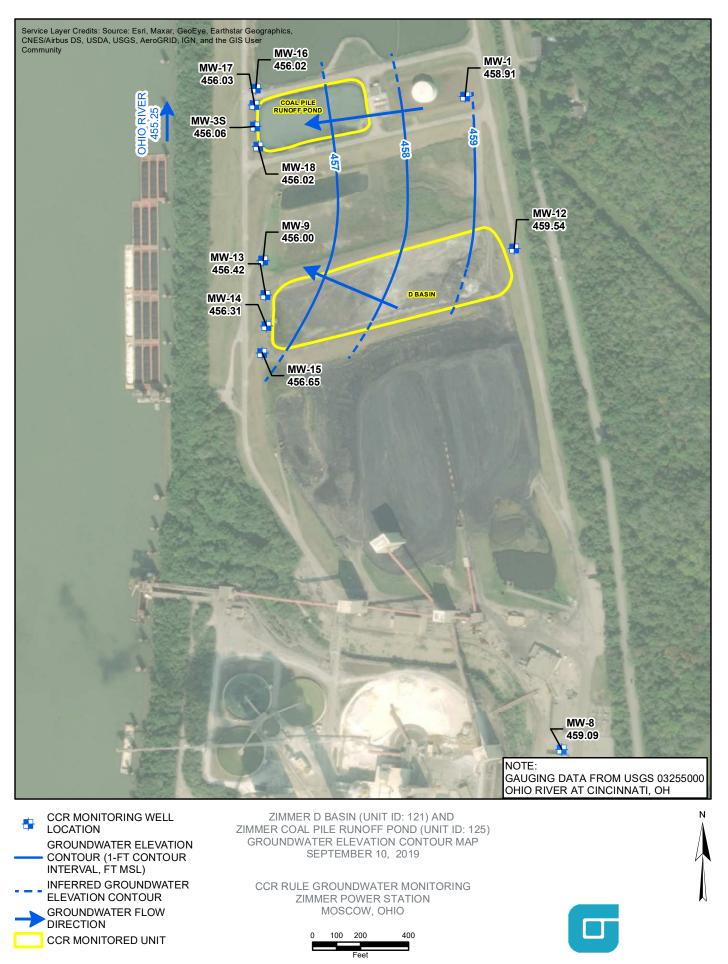
0

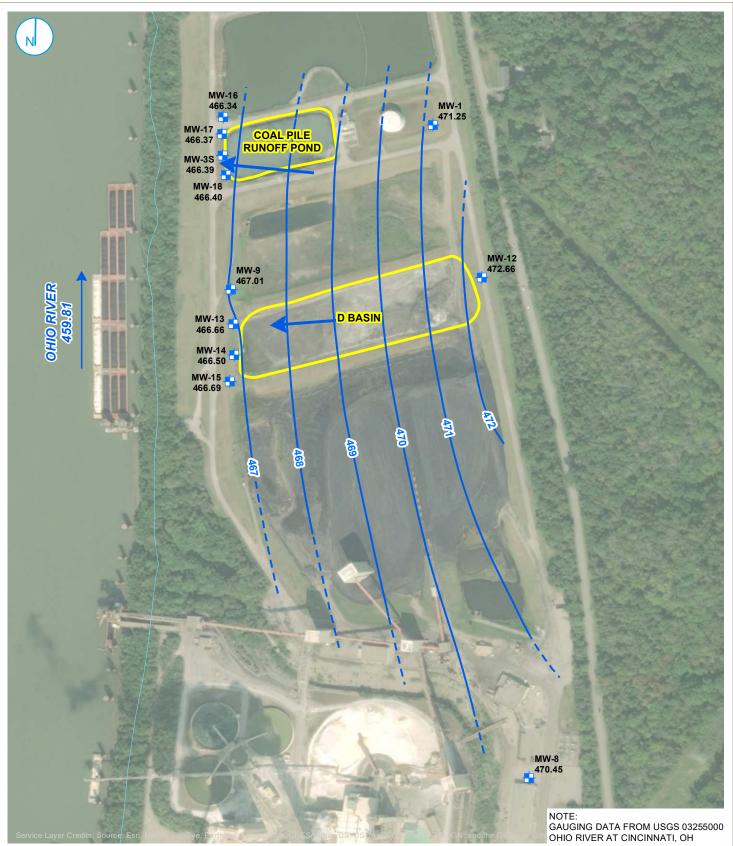
ELEVATION CONTOUR

GROUNDWATER FLOW

CCR MONITORED UNIT

DIRECTION





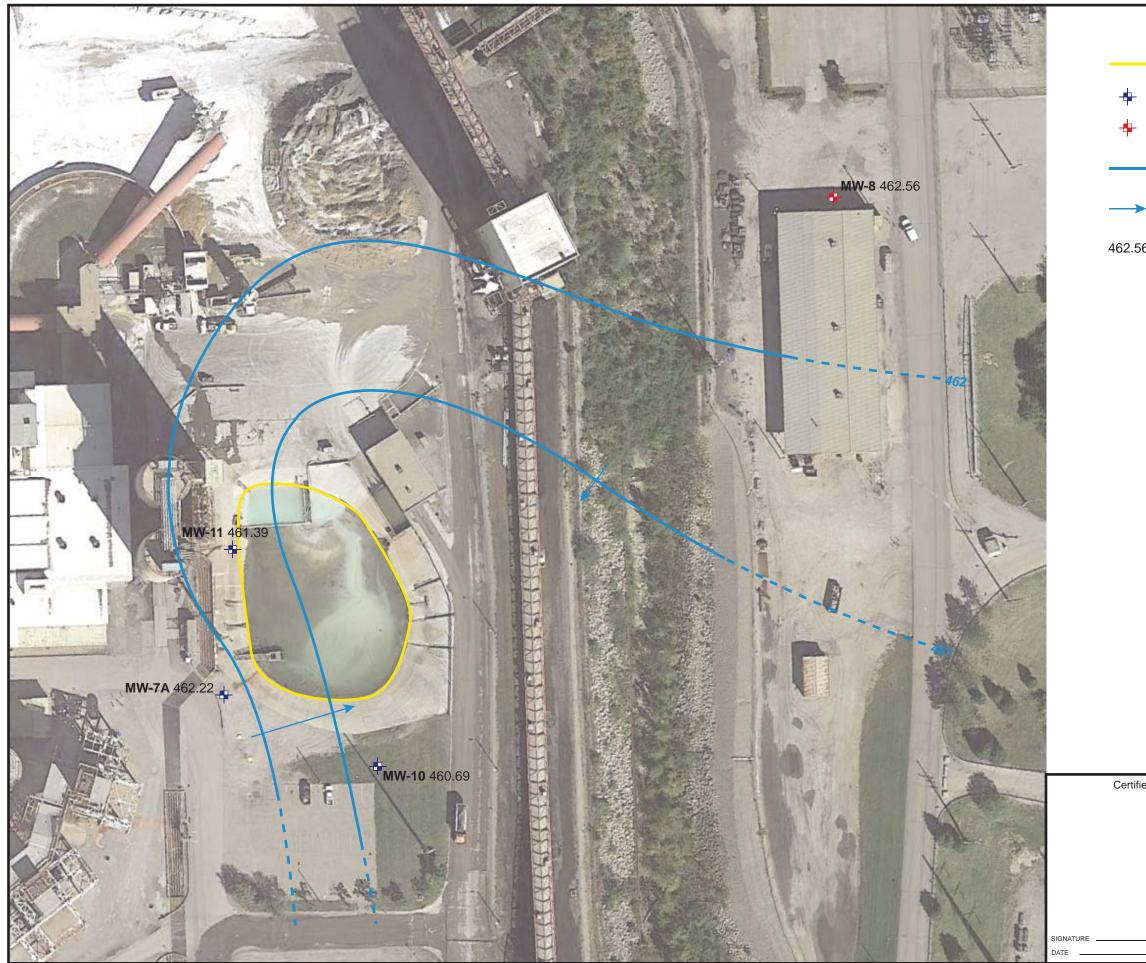
CCR MONITORED UNIT

100 200 400

0

CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 SURFACE WATER FEATURE
 CCR MONITORED UNIT

200

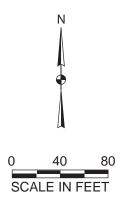

400

┛ Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

DOWNGRADIENT MONITORING WELL LOCATION

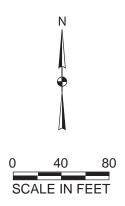

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

462.56 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

NOTE- RISING OHIO RIVER CONDITIONS TO NEAR FLOOD STAGE

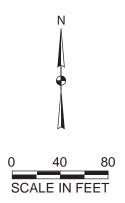

ed By:	Dyneg	Y Y		Zimmer Station ht County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	DECEMBER 29, 2015				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.40 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

NOTE- RAPID RISING OHIO RIVER CONDITIONS FOLLOWING RAPID DECENDING CONDITIONS FROM NEAR FLOOD STAGE

ied By:	Dyneg	Y		Zimmer Station t County, Ohio		
	en de becor deside des	FIGU	IRE 1			
	GRO	UNDWATER	SURFACE	MAP-		
	MARCH 16, 2016					
	GYPSUM RECYCLING POND (UNIT ID: 124)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE REV NO. DWG. BY CHKD. BY					
	08/04/16	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

DOWNGRADIENT MONITORING WELL LOCATION


UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

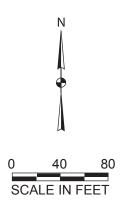

→ GROUNDWATER FLOW DIRECTION

461.68 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

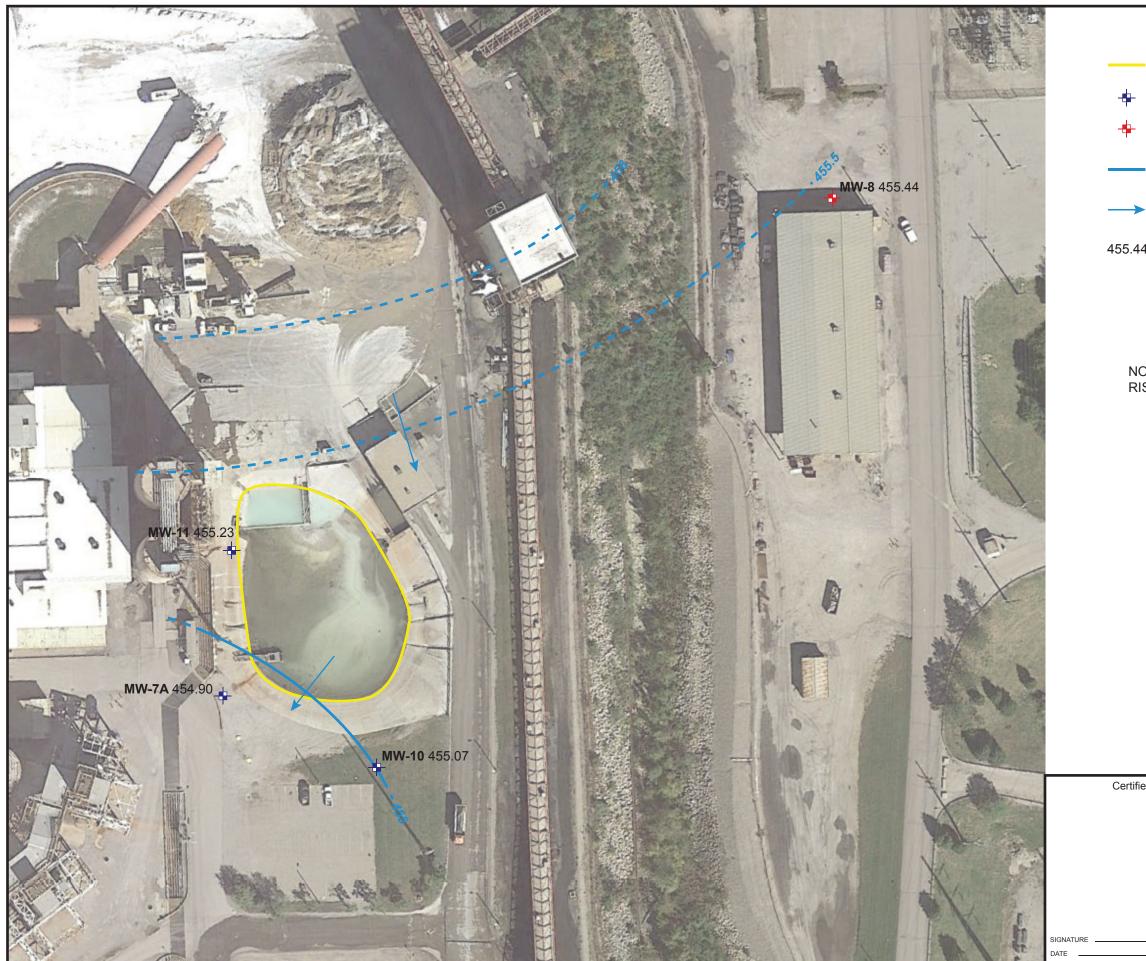
NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GRO	UNDWATER	SURFACE	MAP-	
	JUNE 15, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

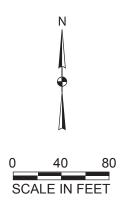

UPGRADIENT MONITORING WELL LOCATION

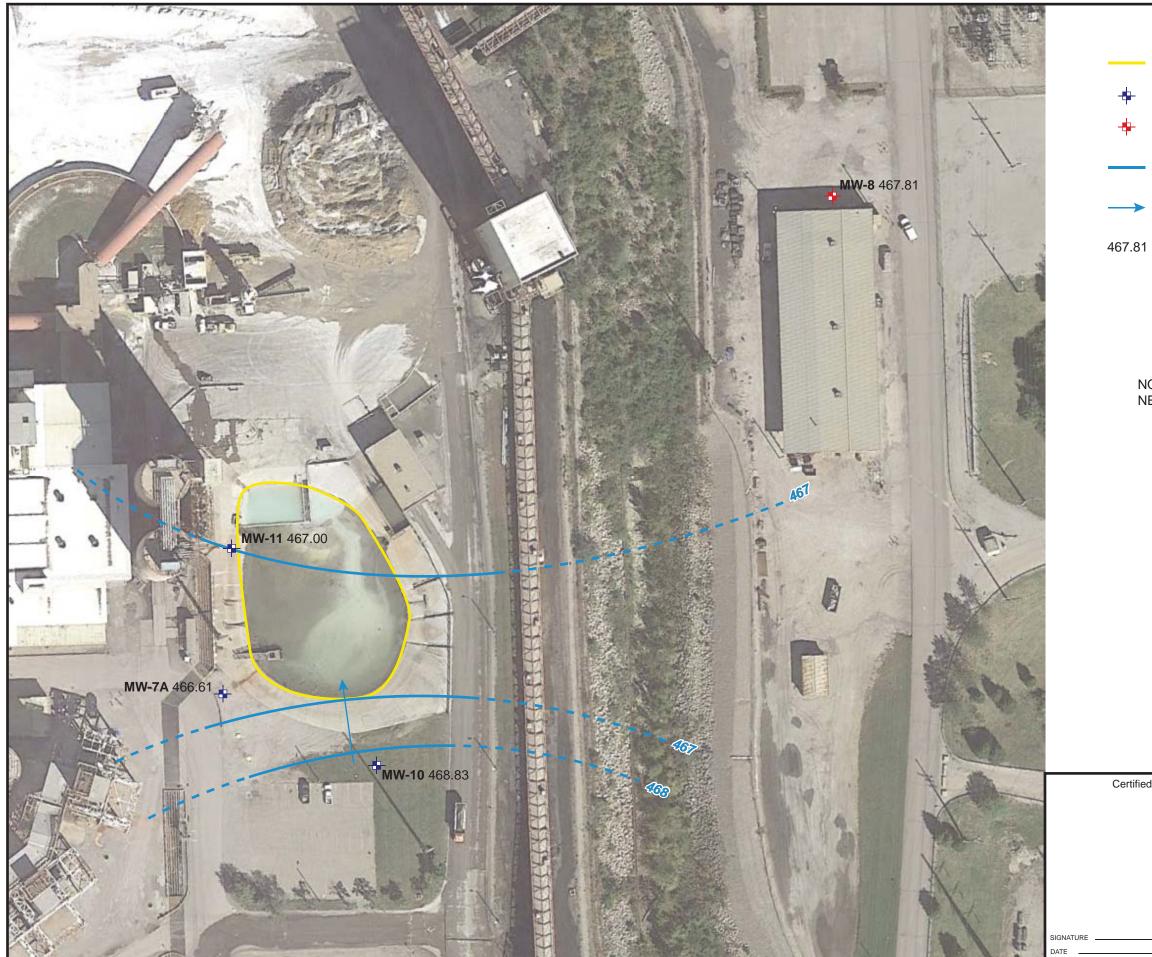
WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)


→ GROUNDWATER FLOW DIRECTION

455.20 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

NOTE- STABLE OHIO RIVER CONDITIONS


ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	SEPTEMBER 26, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	12/44/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- ➤ GROUNDWATER FLOW DIRECTION
- 455.44 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

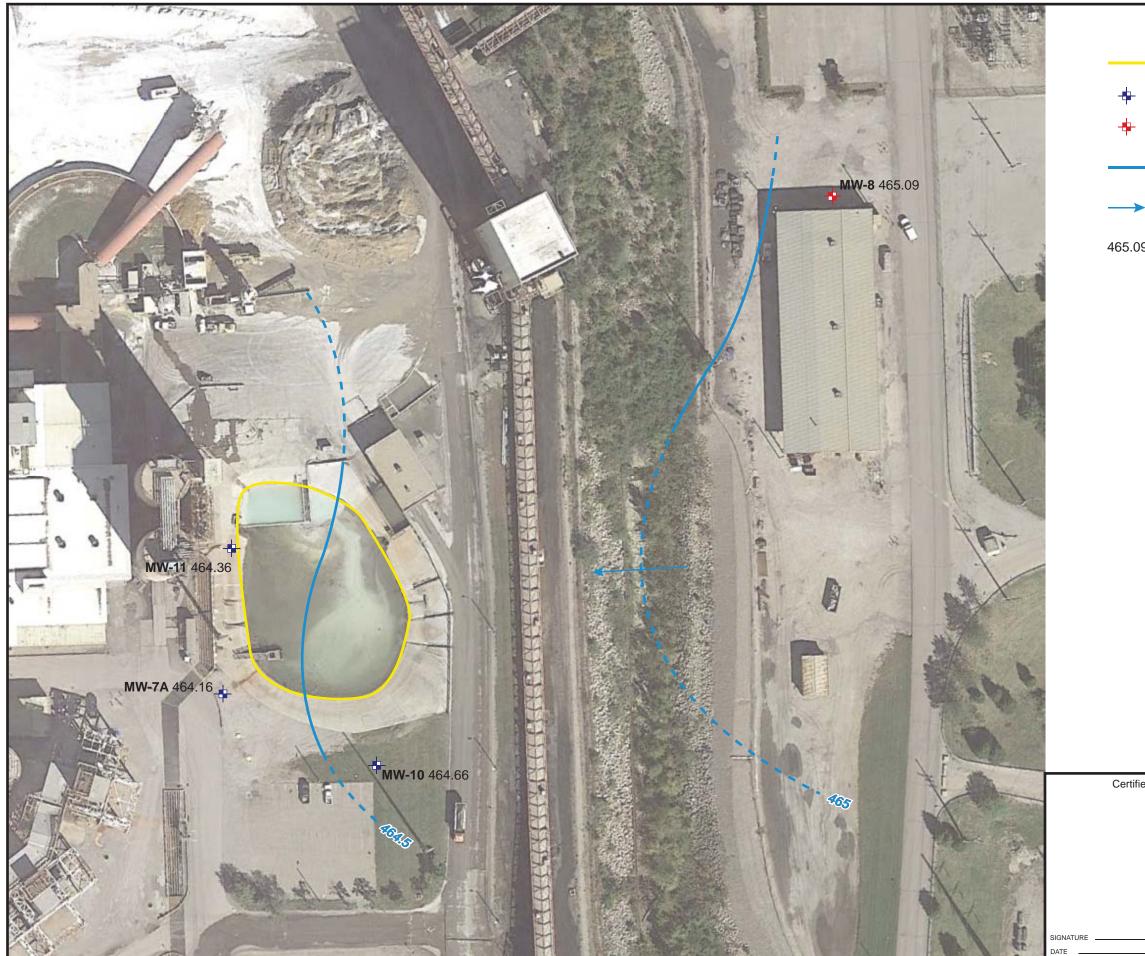
NOTE- SHORT-TERM FALLING RIVER STAGE DURING RISING LONG-TERM OHIO RIVER CONDITIONS

ed By:	Dyneg	Y	_	Zimmer Station It County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	DECEMBER 12, 2016				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. B				
	01/05/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

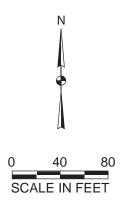

→ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

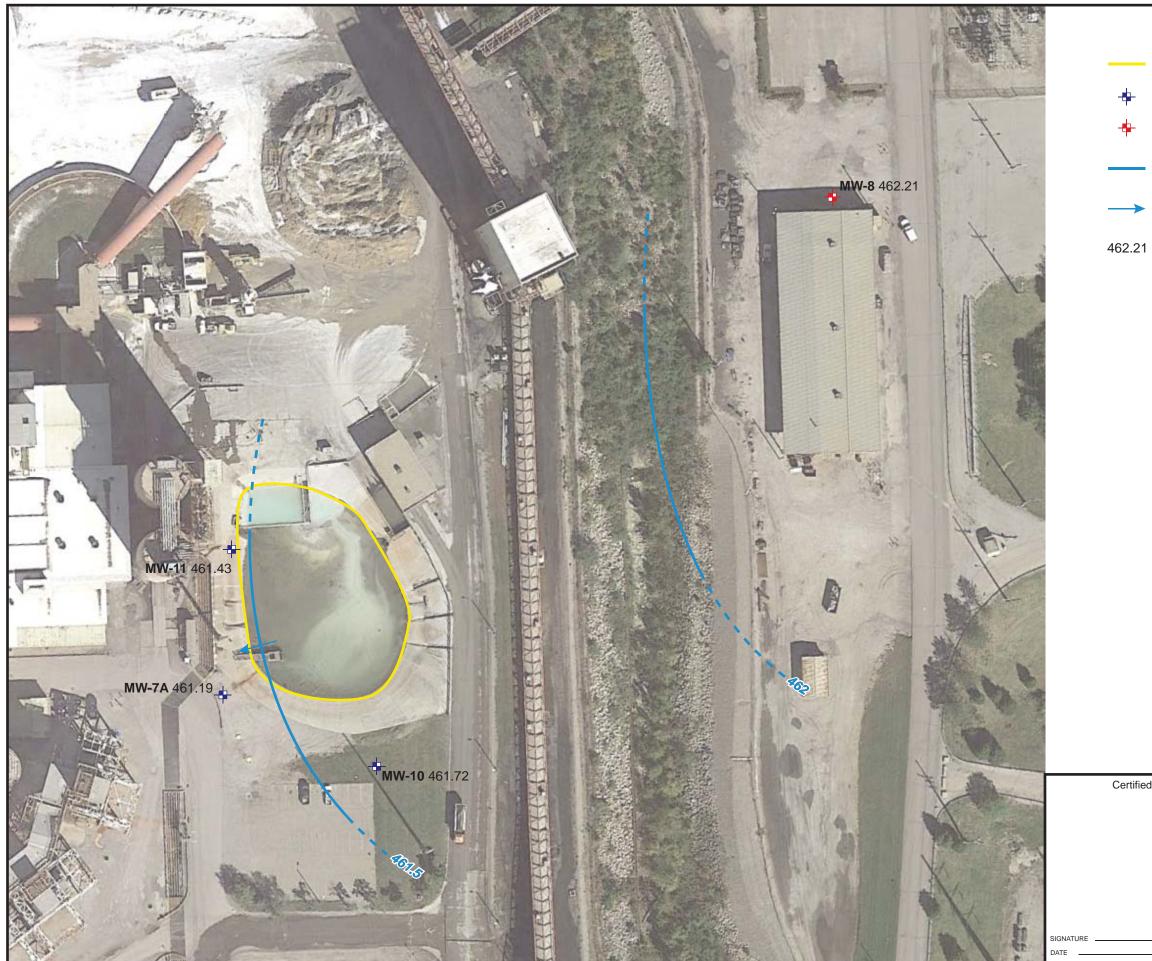
NOTE- FALLING OHIO RIVER CONDITIONS FROM NEAR FLOOD STAGE

ed By:	Dyneg	Y		Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	MARCH 8, 2017				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/19/17	0	ALW	MAW	
	JOB NO. 604	42412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION


UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)


→ GROUNDWATER FLOW DIRECTION

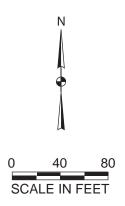
465.09 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

NOTE- FALLING OHIO RIVER CONDITIONS

ed By:	Dyneg	Y Y		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	JUNE 8, 2017				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/19/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

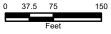
→ GROUNDWATER FLOW DIRECTION


GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	Dyneg	Y		immer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	JULY 13, 2017				
	GYPSUM RECYCLING POND (UNIT ID: 124)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. E				
	09/19/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

 CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER CONTOUR
 GROUNDWATER FLOW DIRECTION

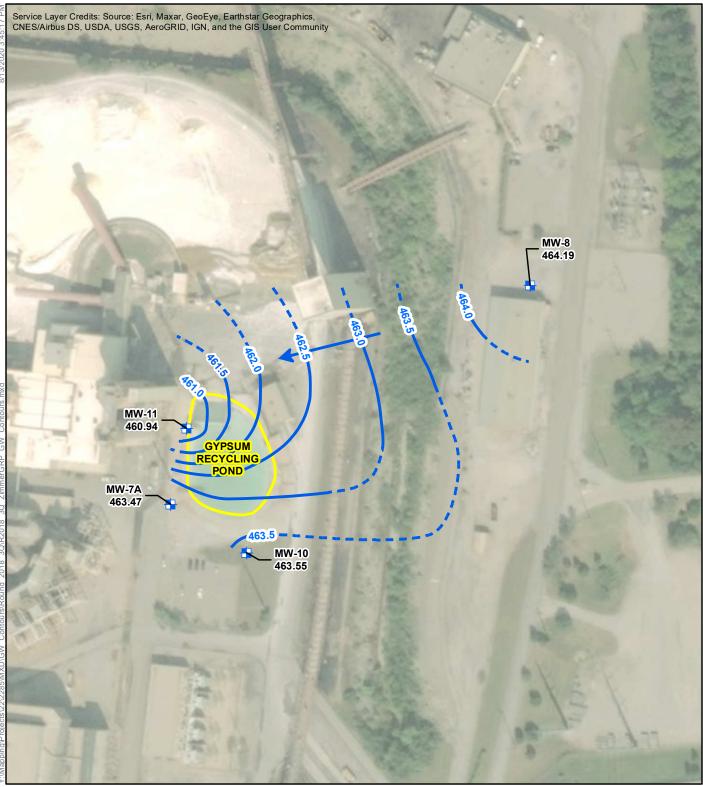

CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 13, 2017

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150

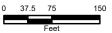
- CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION
 CONTOUR (0.25-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER CONTOUR
 ODOL/NEW/ATER ELOW/
- GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MARCH 12, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150


- CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW
 - DIRECTION

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 10, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

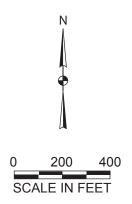
50

100 J Feet

 CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 CCR MONITORED UNIT

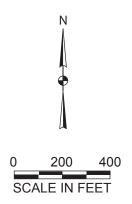
GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

> RAMBOLL US CORPORATION A RAMBOLL COMPANY

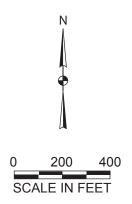


ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

AProject/D/Dynegy/60442412 Miami Fort and Zimmer CCR 2015-2017/Data-Tech/TI/ZIM/ZIM PIEZ/basin d fig1_12-15.

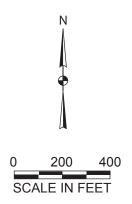

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

ed By:	Dyneg	Y		immer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	DECEMBER 29, 2015				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. B				
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 469.30 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

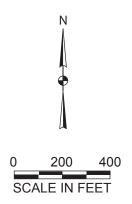
ed By:	Dyneg	Y		immer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	MARCH 16, 2016				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 60442412			AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 461.87 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

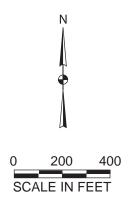


ed By:	Dyneg	Ŷ	_	Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	JUNE 15, 2016				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	08/04/16	0	ALW	MAW	
	JOB NO. 60442412			AECOM	

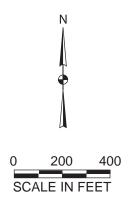
J:/Project/D/Dynegy/60442412 Miami Fort and Zimmer CCR 2015-2017/Data-Tech/TI/ZIM/ZIM PIEZ/basin d fig1_9-16.


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 456.53 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

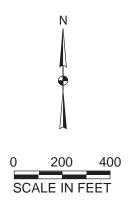
ied By:	Dyneg	Ŷ		Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	SEPTEMBER 26, 2016				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
<u> </u>	12/14/16	0	ALW	MAW	
	JOB NO. 60442412			AECOM	

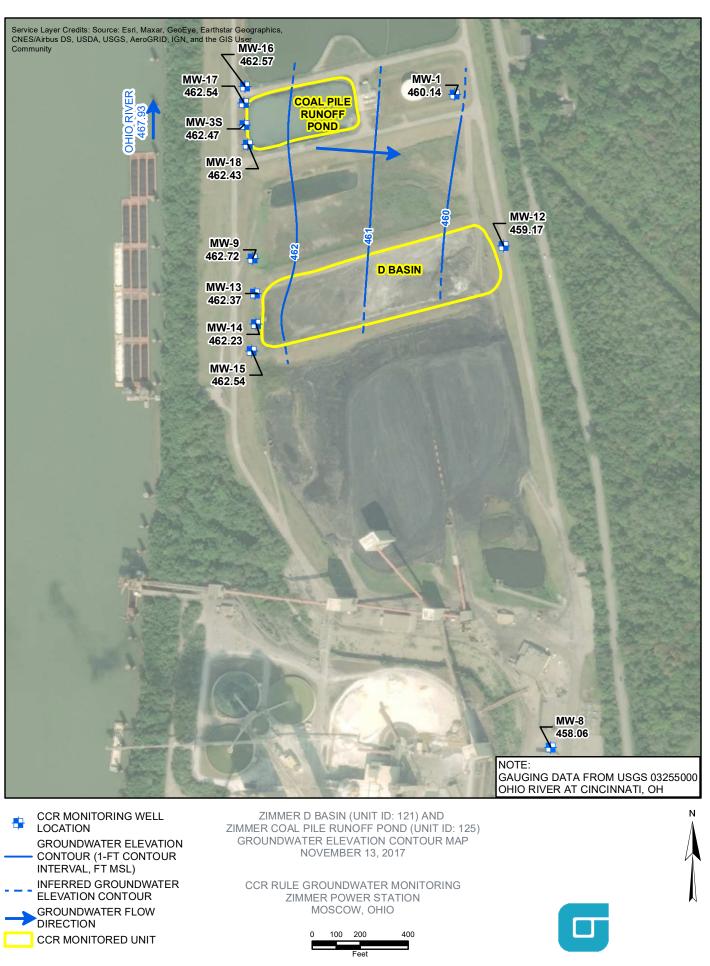

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
 - 7 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

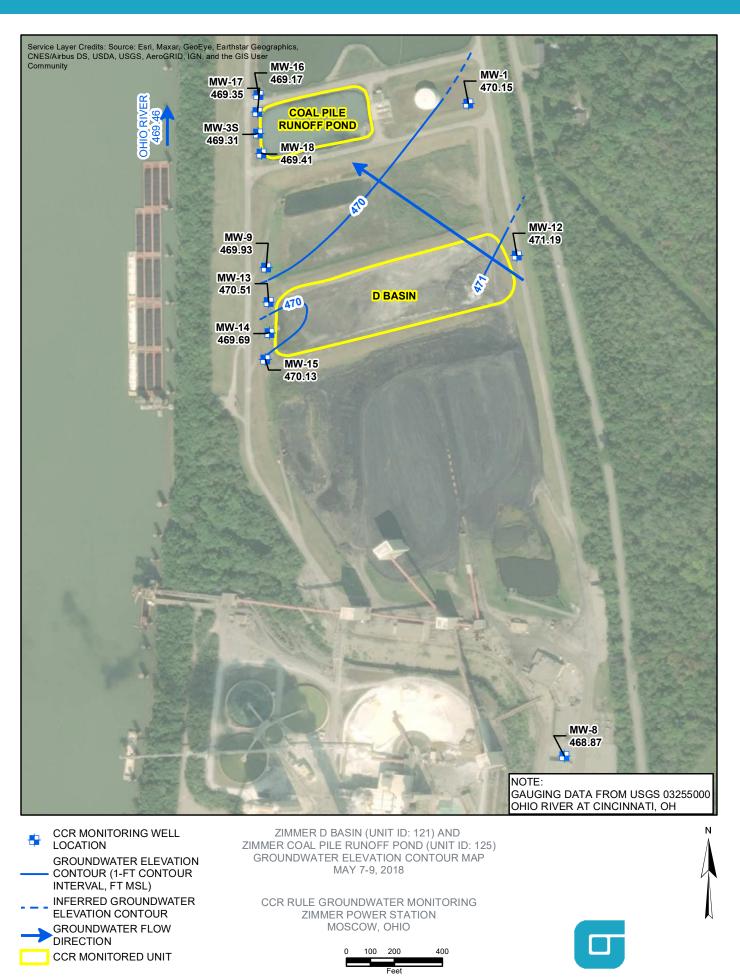
ed By:	Dyneg	Y Y		Zimmer Station t County, Ohio		
		FIGU	IRE 1			
	GROUNDWATER SURFACE MAP-					
	DECEMBER 12, 2016					
	D BASIN (UNIT ID: 121)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE REV NO. DWG. BY CHKD. BY					
	01/05/16	0	ALW	MAW		
	JOB NO. 60442412			AECOM		


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.36 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

ed By:	Dyneg	Y		Zimmer Station It County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	MARCH 8, 2017				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/08/17	0	ALW	MAW	
	JOB NO. 60442412			AECOM	


- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 466.54 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017


ied By:	Dyneg	Y		Zimmer Station t County, Ohio	
		FIGU	IRE 1		
	GROUNDWATER SURFACE MAP-				
	JUNE 8, 2017				
	D BASIN (UNIT ID: 121)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE REV NO. DWG. BY CHKD. BY				
	09/08/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	



- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.14 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

ed By:	Dyneg	Y		Zimmer Station t County, Ohio		
		FIGU	IRE 1			
	GROUNDWATER SURFACE MAP-					
	JULY 13, 2017					
	D BASIN (UNIT ID: 121)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE REV NO. DWG. BY CHKD. BY					
	09/08/17	0	ALW	MAW		
	JOB NO. 60442412			AECOM		

1/28/2020 6:07:38 PM

ELEVATION CONTOUR

GROUNDWATER FLOW

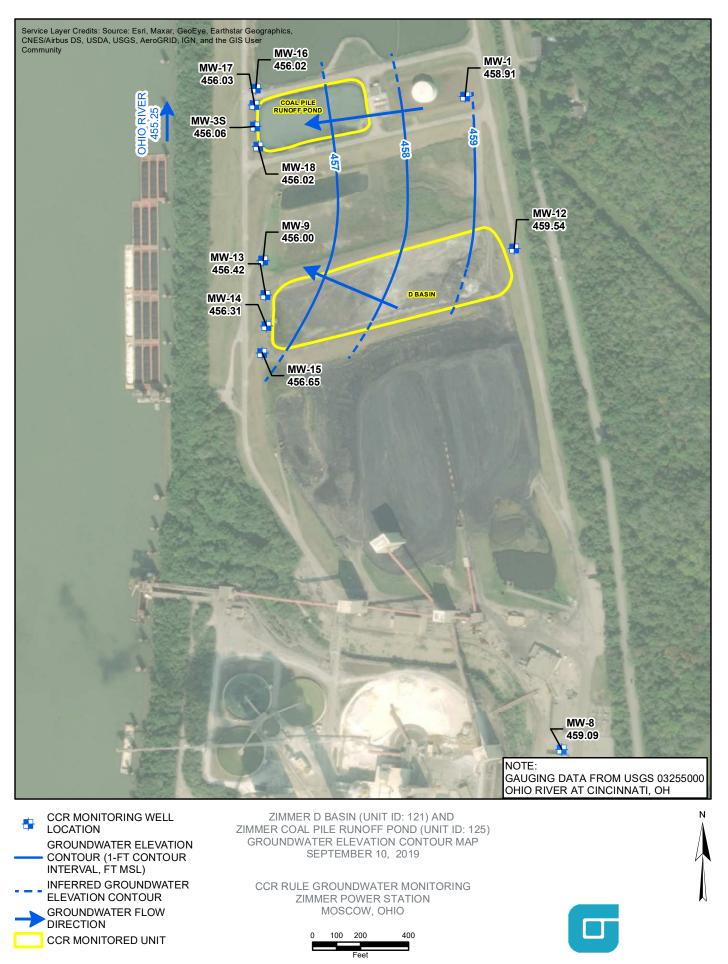
CCR MONITORED UNIT

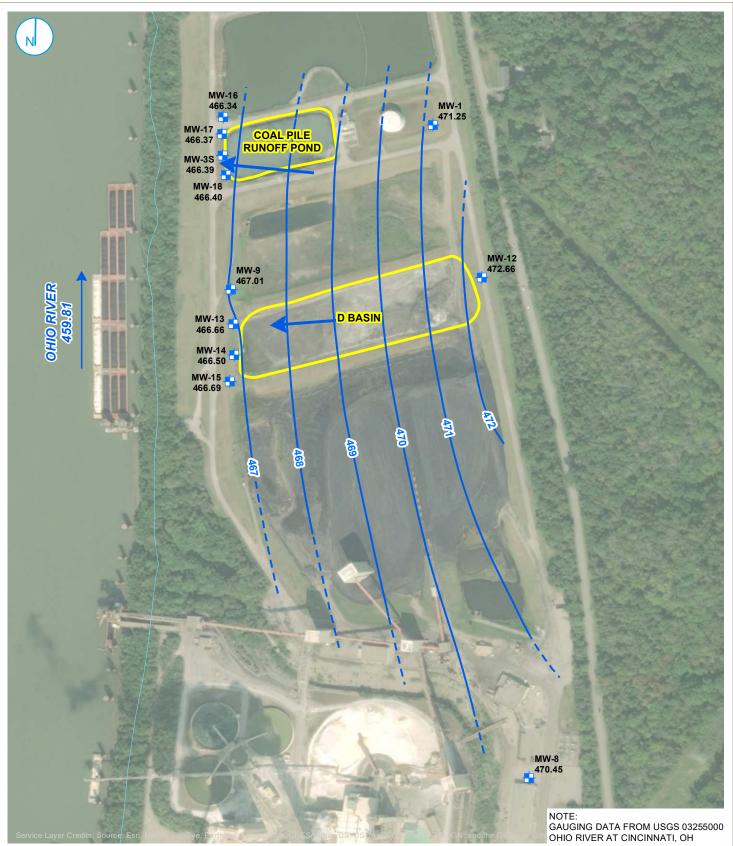
DIRECTION

100 200 400 Feet

ZIMMER POWER STATION MOSCOW, OHIO

0





CCR MONITORED UNIT

100 200 400

0

CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 SURFACE WATER FEATURE
 CCR MONITORED UNIT

200

400

┛ Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

APPENDIX C4 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

Analytical Results - Appendix III Zimmer Coal Pile Runoff Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Background	Wells							
MW-1	12/30/2015	0.0720	155	48.5	0.200	7.2	90.1	544
MW-1	3/16/2016	0.0233	206	59.1	0.146	7.1	85.2	583
MW-1	6/16/2016	0.0389	154	59.6	<1	7.0	95.3	648
MW-1	8/31/2016	0.0431	168	73.4	<1	6.4	113	612
MW-1	9/26/2016	0.0349	160	64.9	<1	7.1	93.1	621
MW-1	10/12/2016	0.0634	156	79.2	<1	7.1	112	571
MW-1	11/16/2016	0.0304	162	57.7	<1	6.4	90.6	596
MW-1	12/13/2016	0.0322	165	52.4	<1	7.0	93.3	561
MW-1	3/9/2017	<0.08	150	58.2	<1	8.3	85.9	589
MW-1	6/8/2017	<0.08	171	65.5	<1	7.1	87.0	582
MW-1	7/13/2017	<0.08	144	61.3	<1	7.0	79.0	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
MW-1	5/9/2018	<1	157	71.0	<1	7.0	88.9	631
MW-1	9/27/2018	<0.08	163	62.7	<1	6.9	113	578
MW-1	3/14/2019	<0.08	152	78.7	<1	7.0	90.2	617
MW-1	9/11/2019	<0.08	167	63.1	<1	7.0	90.6	637
MW-1	4/9/2020	0.123	170	80.5	<0.15	6.7	92.3	592
Downgradien	nt Wells							
MW-3S	8/31/2016	0.109	194	<60	<1	6.9	371	860
MW-3S	9/26/2016	0.209	188	54.7	<1	6.9	338	830
MW-3S	10/12/2016	0.0983	168	66.3	<1	6.9	328	779
MW-3S	11/16/2016	0.0710	169	44.0	<1	7.5	268	706
MW-3S	12/12/2016	0.0567	131	36.4	<1	6.7	179	559
MW-3S	3/9/2017	<0.08	131	36.4	<1	8.3	242	665
MW-3S	6/8/2017	<0.08	208	69.5	<1	7.0	384	892
MW-3S	7/13/2017	0.0984	200	<60	<1	7.2	399	934
MW-3S	11/13/2017	<0.08	127	33.8	<1	6.5	176	560
MW-3S	5/9/2018	<1	115	32.1	<1	6.7	151	568
MW-3S	9/19/2018	0.188	162	41.3	<1	6.7	251	720
MW-3S	3/15/2019	0.143	160	37.3	<1	6.9	199	683
MW-3S	9/11/2019	1.91	228	39.2	<1	7.6	532	1090
MW-3S	4/10/2020	1.03	221	43.0	<0.15	7.0	447	949
MW-16	8/31/2016	0.0506	143	41.8	<1	6.4	198	642
MW-16	9/26/2016	0.102	163	42.2	<1	6.8	173	639
MW-16	10/12/2016	0.0689	149	51.6	<1	7.2	172	609
MW-16	11/16/2016	0.0446	151	38.8	<1	6.4	168	628
MW-16	12/12/2016	0.0527	151	37.8	<1	7.0	175	612
MW-16	3/9/2017	<0.08	106	28.0	<1	8.5	173	484
MW-16	6/8/2017	<0.08	132	31.8	<1	7.1	155	541
MW-16	7/13/2017	<0.08	135	36.1	<1	7.2	160	605
MW-16	11/13/2017	< 0.08	139	38.8	<1	7.0	169	592
MW-16	5/9/2018	<1	128	32.3	<1	7.0	145	571
MW-16	9/19/2018	<0.08	153	38.5	<1	6.9	175	640
MW-16	3/15/2019	<0.08	153	39.4	<1	7.0	160	621
MW-16	9/12/2019	0.130	156	45.5	<1	6.8	187	686
MW-16	4/10/2020	0.0621	162	47.6	0.151	6.9	197	687

Analytical Results - Appendix III Zimmer Coal Pile Runoff Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
MW-17	8/31/2016	0.0584	128	36.3	<1	7.1	190	646
MW-17	9/26/2016	0.0757	147	32.0	<1	7.1	181	622
MW-17	10/12/2016	0.0478	126	39.5	<1	7.4	174	596
MW-17	11/16/2016	0.0447	142	38.7	<1	6.4	167	615
MW-17	12/12/2016	0.0569	145	37.6	<1	7.2	184	608
MW-17	3/9/2017	<0.08	112	<30	<1	8.4	159	528
MW-17	6/8/2017	<0.08	135	31.7	<1	7.1	182	602
MW-17	7/13/2017	<0.08	137	70.2	<1	7.1	390	626
MW-17	11/13/2017	<0.08	145	39.4	<1	7.1	180	627
MW-17	5/9/2018	<1	125	34.9	<1	7.1	167	603
MW-17	9/19/2018	<0.08	152	35.8	<1	6.9	187	659
MW-17	3/15/2019	<0.08	144	38.3	<1	7.1	174	620
MW-17	9/12/2019	0.0889	177	47.8	<1	7.0	280	776
MW-17	4/10/2020	0.0608	178	51.1	0.162	7.0	283	767
MW-18	8/31/2016	4.54	312	67.4	<1	7.0	973	1640
MW-18	9/26/2016	4.11	321	70.6	<1	7.2	874	1660
MW-18	10/12/2016	3.78	287	66.2	<1	7.3	924	1570
MW-18	11/16/2016	4.46	307	<60	<1	7.7	1130	1570
MW-18	12/12/2016	5.14	336	63.3	<1	7.1	918	1570
MW-18	3/9/2017	4.43	287	77.9	<1	8.3	844	1510
MW-18	6/8/2017	3.27	311	59.1	<1	7.0	883	1440
MW-18	7/13/2017	4.85	318	70.8	<1	7.2	1170	1760
MW-18	11/13/2017	3.72	322	54.0	<1	6.9	931	1520
MW-18	5/9/2018	2.62	249	56.5	<1	7.0	748	1450
MW-18	9/19/2018	4.32	306	52.1	<1	6.9	795	1600
MW-18	3/15/2019	2.77	262	49.0	<1	7.0	711	1370
MW-18	9/12/2019	3.00	226	30.8	<1	7.1	612	1210
MW-18	4/10/2020	3.56	272	43.2	0.161	7.0	771	1300

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer Coal Pile Runoff Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background Well	S															
MW-1	12/30/2015	< 0.0005	0.00142	0.0655	<0.001	< 0.0004	0.00191	< 0.0005	0.200	< 0.0002	<0.008	< 0.0001	< 0.0005	0.348	<0.0006	< 0.0005
MW-1	3/16/2016	<0.00418	< 0.00295	0.0863	< 0.000875	<0.00025	<0.0025	< 0.000543	0.146	< 0.000433	0.0101	<0.0001	<0.0025	0.453	<0.00398	<0.00138
MW-1	6/16/2016	< 0.002	<0.001	0.0601	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.603	< 0.005	<0.001
MW-1	8/31/2016	< 0.002	<0.001	0.0660	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0102	<0.0002	<0.005	0.0844	< 0.005	<0.001
MW-1	9/26/2016	<0.002	<0.001	0.0627	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.168	<0.005	<0.001
MW-1	10/12/2016	<0.002	<0.001	0.0639	<0.001	< 0.001	< 0.002	< 0.0005	<1	0.00268	<0.01	< 0.0002	< 0.005	0.489	< 0.005	< 0.001
MW-1	11/16/2016	<0.002	<0.001	0.0670	<0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0097	< 0.0002	< 0.005	0.339	< 0.005	< 0.001
MW-1	12/13/2016	< 0.002	< 0.001	0.0629	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.422	< 0.005	< 0.001
MW-1	3/9/2017	< 0.002	< 0.001	0.0587	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0107	< 0.0002	< 0.005	0.426	< 0.005	< 0.001
MW-1	6/8/2017	< 0.002	< 0.001	0.0643	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0116	< 0.0002	< 0.005	0.349	< 0.005	< 0.001
MW-1 MW-1	7/13/2017	<0.002 NA	<0.001 NA	0.0566 NA	<0.001 NA	<0.001 NA	<0.002 NA	<0.0005 NA	<1	<0.001 NA	<0.00959 NA	<0.0002 NA	<0.005 NA	0.144 NA	<0.005 NA	<0.001 NA
MW-1	5/9/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1 <1	<0.005	<0.04	<0.0002	<0.01	0.370	<0.01	<0.002
MW-1	9/27/2018	<0.003 NA	<0.005 NA	<0.2 NA	<0.004 NA	<0.005 NA	<0.005 NA	<0.005 NA	<1	<0.005 NA	<0.04 NA	<0.0002 NA	×0.01 NA	0.370	<0.01 NA	<0.002 NA
MW-1	3/14/2019	<0.002	<0.001	0.0665	<0.001	<0.001	0.0023	<0.0005	<1	<0.001	0.00665	<0.0002	<0.005	0.231	<0.005	<0.001
MW-1	9/11/2019	×0.002 NA	< 0.001	0.0000	<0.001	NA	< 0.0023	< 0.0005	<1	<0.001	0.00003	×0.0002 NA	<0.005	0.171	<0.005	NA
MW-1	4/9/2020	< 0.004	<0.001	0.0775	<0.001	<0.001	< 0.002	< 0.0003	<0.15	< 0.001	0.00964	<0.0002	<0.005	0.0302	<0.003	<0.002
Downgradient We		\$0.001	40.00L	0.0120	40.00Z	\$0.001	40.00L	40.00L	\$0.10		0.00001	<0.0002	10.000	0.0002	40.00Z	40.002
MW-3S	8/31/2016	<0.002	<0.001	0.0519	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.138	<0.005	<0.001
MW-3S	9/26/2016	<0.002	<0.001	0.0515	<0.001	< 0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	<0.0002	< 0.005	0.364	0.00588	<0.001
MW-3S	10/12/2016	<0.002	<0.001	0.0508	<0.001	< 0.001	<0.002	< 0.0005	<1	0.00182	<0.00959	< 0.0002	< 0.005	0.249	< 0.005	<0.001
MW-3S	11/16/2016	< 0.002	0.0019	0.0491	<0.001	< 0.001	<0.002	0.00254	<1	0.00134	<0.00959	< 0.0002	< 0.005	0.520	0.00557	< 0.001
MW-3S	12/12/2016	< 0.002	< 0.001	0.0393	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.0391	0.00529	<0.001
MW-3S	3/9/2017	< 0.002	< 0.001	0.0383	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.329	< 0.005	< 0.001
MW-3S	6/8/2017	< 0.002	< 0.001	0.0507	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.315	< 0.005	< 0.001
MW-3S	7/13/2017	< 0.002	< 0.001	0.0513	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.441	< 0.005	< 0.001
MW-3S	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-3S	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.346	<0.01	< 0.002
MW-3S	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.491	NA	NA
MW-3S	3/15/2019	< 0.002	<0.001	0.0517	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	< 0.005	< 0.0002	<0.005	0.262	< 0.005	<0.001
MW-3S	9/11/2019	NA	<0.001	0.0715	NA	<0.001	0.00275	<0.0005	<1	<0.001	0.0118	NA	<0.005	0.338	0.0111	NA
MW-3S	4/10/2020	<0.004	<0.002	0.0576	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00548	<0.0002	<0.005	0.888	0.00390	<0.002
MW-16	8/31/2016	<0.002	<0.001	0.0371	<0.001	<0.001	<0.002	0.00402	<1	<0.001	<0.00959	<0.0002	0.00679	0.371	<0.005	<0.001
MW-16	9/26/2016	< 0.002	<0.001	0.0414	<0.001	<0.001	< 0.002	0.00416	<1	<0.001	<0.00959	<0.0002	0.00517	0.402	<0.005	<0.001
MW-16	10/12/2016	<0.002	0.00124	0.0432	<0.001	<0.001	<0.002	0.00417	<1	0.00383	<0.00959	<0.0002	0.00508	0.311	<0.005	<0.001
MW-16	11/16/2016	<0.002	<0.001	0.0466	<0.001	<0.001	<0.002	0.00322	<1	<0.001	<0.00959	<0.0002	0.00572	0.489	<0.005	<0.001
MW-16	12/12/2016	< 0.002	<0.001	0.0453	<0.001	< 0.001	< 0.002	0.00461	<1	< 0.001	< 0.00959	< 0.0002	0.00674	0.664	< 0.005	< 0.001
MW-16	3/9/2017	< 0.002	< 0.001	0.0314	< 0.001	< 0.001	< 0.002	0.00204	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.317	< 0.005	< 0.001
MW-16	6/8/2017	< 0.002	< 0.001	0.0348	< 0.001	< 0.001	< 0.002	0.00246	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.439	< 0.005	< 0.001
MW-16	7/13/2017	<0.002	<0.001	0.0344	<0.001	<0.001	<0.002	0.00252	<1	<0.001	<0.00959	<0.0002	<0.005	0.566	<0.005	<0.001
MW-16	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-16 MW-16	5/9/2018	<0.003 NA	<0.005 NA	<0.2 NA	<0.004 NA	<0.005 NA	<0.005 NA	<0.005 NA	<1	<0.005 NA	<0.04 NA	<0.0002 NA	<0.01 NA	0.240 0.554	<0.01 NA	<0.002 NA
MW-16 MW-16	9/19/2018 3/15/2019	NA <0.002	NA <0.001	0.114	NA <0.001	NA <0.001	NA <0.002	0.00203	<1 <1	NA <0.001	NA 0.00677	NA <0.0002	NA <0.005	0.554	NA <0.005	NA <0.001
MW-16 MW-16	<u>3/15/2019</u> 9/12/2019	<0.002 NA	<0.001	0.114	<0.001 NA	<0.001	<0.002	0.00203	<1 <1	<0.001	0.00677	<0.0002 NA	<0.005	0.233	<0.005	<0.001 NA
MW-16 MW-16	<u>9/12/2019</u> 4/10/2020	NA <0.004	<0.001	0.0538	NA <0.002	<0.001	<0.00218	0.00201	<1 0.151	<0.001	0.00111	NA <0.0002	<0.005	0.969	<0.005	NA <0.002
01-7414	4/10/2020	<0.004	<0.002	0.0474	<0.002	<0.001	<0.002	0.00208	0.151	<0.005	0.00522	<0.0002	<0.005	C0.1	<0.002	<0.002

Analytical Results - Appendix IV Zimmer Coal Pile Runoff Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-17	8/31/2016	< 0.002	< 0.001	0.0489	< 0.001	< 0.001	<0.002	0.00177	<1	< 0.001	< 0.00959	< 0.0002	0.00715	0.533	< 0.005	< 0.001
MW-17	9/26/2016	< 0.002	< 0.001	0.0537	< 0.001	< 0.001	< 0.002	0.00189	<1	< 0.001	< 0.00959	< 0.0002	0.00825	0.802	< 0.005	< 0.001
MW-17	10/12/2016	< 0.002	<0.001	0.0532	< 0.001	< 0.001	< 0.002	0.00203	<1	0.0015	< 0.00959	< 0.0002	0.009	0.363	< 0.005	< 0.001
MW-17	11/16/2016	< 0.002	<0.001	0.0642	< 0.001	< 0.001	< 0.002	0.00159	<1	<0.001	< 0.00959	< 0.0002	0.0096	0.403	< 0.005	< 0.001
MW-17	12/12/2016	< 0.002	<0.001	0.0599	< 0.001	< 0.001	< 0.002	0.00188	<1	<0.001	< 0.00959	< 0.0002	0.0095	0.781	< 0.005	< 0.001
MW-17	3/9/2017	< 0.002	<0.001	0.0423	< 0.001	<0.001	< 0.002	0.00102	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.264	< 0.005	< 0.001
MW-17	6/8/2017	0.00232	< 0.001	0.0498	< 0.001	< 0.001	< 0.002	0.00109	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.266	< 0.005	< 0.001
MW-17	7/13/2017	< 0.002	<0.001	0.0468	< 0.001	<0.001	< 0.002	0.00117	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.246	< 0.005	< 0.001
MW-17	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-17	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.650	<0.01	< 0.002
MW-17	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.359	NA	NA
MW-17	3/15/2019	< 0.002	< 0.001	0.0619	< 0.001	<0.001	< 0.002	0.000964	<1	<0.001	< 0.005	< 0.0002	< 0.005	0.150	< 0.005	< 0.001
MW-17	9/12/2019	NA	<0.001	0.0815	NA	< 0.001	0.00243	0.00139	<1	<0.001	0.0175	NA	< 0.005	0.658	< 0.005	NA
MW-17	4/10/2020	< 0.004	< 0.002	0.0602	< 0.002	<0.001	< 0.002	< 0.002	0.162	< 0.005	0.00536	< 0.0002	< 0.005	0.806	0.00204	< 0.002
MW-18	8/31/2016	< 0.002	<0.001	0.0494	< 0.001	<0.001	< 0.002	0.00369	<1	<0.001	0.00973	< 0.0002	< 0.005	0.975	0.0112	< 0.001
MW-18	9/26/2016	< 0.002	< 0.001	0.0471	< 0.001	< 0.001	< 0.002	0.00279	<1	<0.001	< 0.00959	< 0.0002	< 0.005	1.55	0.0142	< 0.001
MW-18	10/12/2016	< 0.002	< 0.001	0.0468	< 0.001	<0.001	< 0.002	0.00240	<1	0.00106	< 0.00959	< 0.0002	< 0.005	0.394	0.00520	< 0.001
MW-18	11/16/2016	< 0.002	< 0.001	0.0524	< 0.001	<0.001	< 0.002	0.00231	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.65	0.0128	< 0.001
MW-18	12/12/2016	< 0.002	<0.001	0.0550	< 0.001	< 0.001	< 0.002	0.00358	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.89	0.0134	< 0.001
MW-18	3/9/2017	< 0.002	< 0.001	0.0416	< 0.001	<0.001	< 0.002	0.00168	<1	<0.001	0.0111	< 0.0002	< 0.005	0.531	< 0.005	< 0.001
MW-18	6/8/2017	< 0.002	< 0.001	0.0475	< 0.001	<0.001	< 0.002	0.00203	<1	<0.001	0.0121	< 0.0002	< 0.005	0.489	< 0.005	< 0.001
MW-18	7/13/2017	< 0.002	<0.001	0.0407	< 0.001	< 0.001	< 0.002	0.00172	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.728	0.00697	< 0.001
MW-18	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-18	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	<0.005	<1	<0.005	< 0.04	< 0.0002	<0.01	0.405	<0.01	< 0.002
MW-18	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.699	NA	NA
MW-18	3/15/2019	< 0.002	<0.001	0.0398	< 0.001	<0.001	< 0.002	0.00131	<1	<0.001	0.00562	< 0.0002	< 0.005	0.501	0.0143	<0.001
MW-18	9/12/2019	NA	<0.001	0.0411	NA	<0.001	0.00252	0.00176	<1	<0.001	0.0134	NA	< 0.005	0.328	0.0157	NA
MW-18	4/10/2020	< 0.004	<0.002	0.0317	< 0.002	<0.001	< 0.002	<0.002	0.161	< 0.005	0.00537	< 0.0002	< 0.005	0.568	0.0120	< 0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

Analytical Results - Appendix III Zimmer Gypsum Recycle Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Background	Wells							
MW-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52.0	370
MW-8	3/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	6/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	9/27/2016	0.0413	119	13.1	<1	7.0	66.0	446
MW-8	12/13/2016	0.0405	128	19.2	<1	7.0	65.2	455
MW-8	3/9/2017	<0.08	114	21.1	<1	8.6	57.3	474
MW-8	6/8/2017	<0.08	118	31.6	<1	7.5	63.4	534
MW-8	7/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15.0	<1	6.8	<50	434
MW-8	5/8/2018	<1	127	33.8	<1	7.0	62.8	491
MW-8	9/27/2018	<0.08	121	14.5	<1	7.0	66.5	439
MW-8	3/14/2019	<0.08	117	23.8	<1	6.9	62.5	462
MW-8	9/11/2019	<0.08	129	34.0	<1	6.8	59.5	508
MW-8	4/9/2020	< 0.03	122	16.0	<0.15	6.8	65.2	421
Downgradien	t Wells	•					•	
MW-7A	12/30/2015	1.63	135	81.4	0.206	7.0	259	737
MW-7A	3/16/2016	2.82	180	134	0.0655	6.6	444	1090
MW-7A	6/16/2016	0.840	122	90.7	<1	6.8	261	765
MW-7A	9/27/2016	4.51	198	108	<1	6.7	512	1180
MW-7A	12/13/2016	1.41	121	160	<1	6.7	553	721
MW-7A	3/10/2017	6.14	260	156	<1	7.7	682	1870
MW-7A	6/8/2017	1.58	146	78.6	<1	6.7	311	854
MW-7A	7/13/2017	1.22	116	69.1	<1	6.8	247	725
MW-7A	11/14/2017	1.40	118	64.7	<1	6.7	277	718
MW-7A	5/8/2018	1.54	135	63.7	<1	6.8	318	923
MW-7A	9/27/2018	1.57	119	55.7	<1	6.7	205	667
MW-7A	3/13/2019	3.03	175	111	<1	6.5	517	1170
MW-7A	9/11/2019	3.38	159	62.8	<1	7.3	376	912
MW-7A	4/10/2020	2.43	156	62.8	<0.15	7.2	366	876
MW-10	12/29/2015	5.42	135	57.3	0.218	7.7	234	1050
MW-10	3/16/2016	9.05	189	122	0.181	7.1	550	1230
MW-10	6/16/2016	4.91	81.5	146	<1	7.2	409	960
MW-10	9/27/2016	0.270	137	149	<1	7.1	606	1400
MW-10	12/13/2016	6.63	127	221	<1	6.8	527	1190
MW-10	3/10/2017	6.00	103	77.9	<1	7.9	426	1160
MW-10	6/8/2017	5.87	99.7	99.5	<1	6.9	452	1050
MW-10	7/13/2017	4.87	79.1	75.7	<1	7.1	367	883
MW-10	11/14/2017	4.07	126	<150	1.44	6.9	582	1210
MW-10	5/8/2018	5.72	249	146	2.49	6.9	1070	2180
MW-10	9/27/2018	4.89	150	113	1.77	6.9	534	1230
MW-10	3/13/2019	5.90	308	176	2.38	6.7	1420	2390
MW-10	9/12/2019	2.79	140	73.3	1.41	6.8	513	1100
MW-10	4/10/2020	4.38	108	60.5	1.92	7.3	372	845

Analytical Results - Appendix III Zimmer Gypsum Recycle Pond

Sample Location	Date Sampled	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	рН (s.u.)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-11	12/29/2015	0.581	176	70.4	0.175	7.0	252	768
MW-11	3/16/2016	0.489	270	126	0.0952	6.8	447	1140
MW-11	6/16/2016	0.572	130	81.1	<1	6.9	170	640
MW-11	9/27/2016	0.444	137	74.8	<1	6.9	196	703
MW-11	12/13/2016	1.45	225	131	<1	6.8	545	1110
MW-11	3/10/2017	0.434	147	66.9	<1	8.1	209	736
MW-11	6/8/2017	0.508	167	69.9	<1	6.8	248	767
MW-11	7/13/2017	0.825	149	66.7	<1	6.8	195	728
MW-11	11/14/2017	0.498	133	68.1	<1	6.8	188	634
MW-11	5/8/2018	<1	139	75.1	<1	7.0	197	793
MW-11	9/27/2018	0.921	164	78.1	<1	6.8	<250	771
MW-11	3/13/2019	0.458	181	58.2	<1	6.7	352	959
MW-11	9/12/2019	0.450	119	45.1	<1	6.9	145	590
MW-11	4/10/2020	0.719	110	48.9	0.170	7.4	135	510

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer Gypsum Recycle Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background Well	ls															
MW-8	12/30/2015	< 0.0005	0.00115	0.0378	<0.001	< 0.0004	< 0.0005	< 0.0005	0.0766	< 0.0002	<0.008	<0.0001	< 0.0005	0.173	< 0.0006	< 0.0005
MW-8	3/16/2016	<0.00418	< 0.00295	0.0681	< 0.000875	<0.00025	< 0.0025	< 0.000543	0.106	< 0.000433	0.00635	<0.0001	<0.0025	0.408	< 0.00398	< 0.00138
MW-8	6/15/2016	< 0.002	<0.001	0.0418	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	<0.005	0.0694	< 0.005	< 0.001
MW-8	9/27/2016	< 0.002	<0.001	0.0430	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	<0.0002	< 0.005	0.214	< 0.005	< 0.001
MW-8	12/13/2016	< 0.002	<0.001	0.0458	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	<0.0002	< 0.005	0.710	< 0.005	<0.001
MW-8	3/9/2017	<0.002	<0.001	0.0423	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.361	< 0.005	<0.001
MW-8	6/8/2017	< 0.002	<0.001	0.0491	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	<0.0002	< 0.005	0.0283	< 0.005	<0.001
MW-8	7/13/2017	<0.002	<0.001	0.0447	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	< 0.0002	<0.005	0.269	< 0.005	<0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	5/8/2018	< 0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	< 0.005	<0.04	<0.0002	<0.01	0.182	<0.01	< 0.002
MW-8	9/27/2018	NA	<0.001	NA	NA	NA	<0.002	NA	<1	NA	NA	NA	NA	0.215	NA	NA
MW-8	3/14/2019	<0.002	<0.001	0.0454	<0.001	<0.001	0.00201	<0.0005	<1	<0.001	<0.005	<0.0002	<0.005	0.0807	< 0.005	<0.001
MW-8	9/11/2019	NA	<0.001	0.0552	< 0.001	NA	0.00206	<0.0005	<1	< 0.001	0.00754	NA	< 0.005	0.261	< 0.005	NA
MW-8	4/9/2020	<0.004	<0.002	0.0460	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
Downgradient We	ells															
MW-7A	12/30/2015	< 0.0005	0.00217	0.0597	<0.001	< 0.0004	< 0.0005	0.0126	0.206	< 0.0002	<0.008	< 0.0001	0.00369	0.174	< 0.0006	< 0.0005
MW-7A	3/16/2016	0.000634	0.0978	0.0543	<0.001	< 0.0004	0.0123	0.00783	0.0655	< 0.0002	0.00136	< 0.0001	0.0014	0.645	0.00267	< 0.0005
MW-7A	6/16/2016	< 0.002	< 0.001	0.0377	<0.001	< 0.001	< 0.002	0.00291	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.256	< 0.005	< 0.001
MW-7A	9/27/2016	< 0.002	<0.001	0.0544	<0.001	<0.001	< 0.002	0.00411	<1	<0.001	< 0.00959	< 0.0002	<0.005	0.471	< 0.005	< 0.001
MW-7A	12/13/2016	< 0.002	<0.001	0.0319	<0.001	<0.001	< 0.002	0.00298	<1	<0.001	< 0.00959	<0.0002	<0.005	0.377	< 0.005	<0.001
MW-7A	3/10/2017	< 0.002	<0.001	0.0437	<0.001	<0.001	< 0.002	0.00528	<1	< 0.001	<0.00959	<0.0002	< 0.005	0.190	< 0.005	<0.001
MW-7A	6/8/2017	<0.002	<0.001	0.0287	<0.001	<0.001	<0.002	0.00149	<1	<0.001	<0.00959	<0.0002	<0.005	0.347	< 0.005	<0.001
MW-7A	7/13/2017	< 0.002	<0.001	0.0263	<0.001	<0.001	< 0.002	0.00113	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.821	< 0.005	<0.001
MW-7A	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-7A	5/8/2018	< 0.003	<0.005	<0.2	<0.004	<0.005	0.00755	<0.005	<1	< 0.005	<0.04	< 0.0002	<0.01	0.522	<0.01	<0.002
MW-7A	9/27/2018	NA	<0.001	NA	NA	NA	0.00207	NA	<1	NA	NA	NA	NA	0.411	NA	NA
MW-7A	3/13/2019	<0.002	< 0.001	0.0483	<0.001	<0.001	< 0.002	0.00245	<1	< 0.001	< 0.005	< 0.0002	< 0.005	0.310	< 0.005	< 0.001
MW-7A	9/11/2019	NA	< 0.001	0.0458	NA	< 0.001	< 0.002	0.00101	<1	< 0.001	0.0124	NA	< 0.005	0.436	< 0.005	NA
MW-7A	4/10/2020	< 0.004	< 0.002	0.0371	< 0.002	< 0.001	< 0.002	< 0.002	<0.15	< 0.005	< 0.002	< 0.0002	< 0.005	0.785	0.00204	< 0.002
MW-10	12/29/2015	< 0.0005	0.00228	0.130	< 0.001	< 0.0004	0.00293	0.0100	0.218	< 0.0002	<0.008	< 0.0001	0.0146	0.434	< 0.0006	< 0.0005
MW-10	3/16/2016	< 0.0005	0.00263	0.114	< 0.001	< 0.0004	< 0.0005	0.00835	0.181	< 0.0002	0.00132	< 0.0001	0.00750	0.382	< 0.0006	< 0.0005
MW-10	6/16/2016	< 0.002	0.00139	0.0729	< 0.001	< 0.001	< 0.002	0.00410	<1	< 0.001	< 0.00959	< 0.0002	0.00793	0.787	< 0.005	< 0.001
MW-10	9/27/2016	<0.002	0.00203	0.0577	< 0.001	< 0.001	<0.002	0.00756	<1	<0.001	0.0103	< 0.0002	0.0109	0.521	< 0.005	<0.001
MW-10 MW-10	12/13/2016 3/10/2017	<0.002 <0.002	0.00127	0.0436	<0.001 <0.001	<0.001 <0.001	< 0.002	0.00883	<1	< 0.001	<0.00959 <0.00959	< 0.0002	0.00590	0.135 0.446	< 0.005	<0.001
MW-10 MW-10			0.00164 0.00286		<0.001	<0.001	<0.002	0.00593	<1 <1	< 0.001	<0.00959	< 0.0002	0.00513	0.446	< 0.005	<0.001 <0.001
MW-10	6/8/2017 7/13/2017	<0.002 <0.002	<0.00286	0.0618	<0.001	<0.001	<0.002 <0.002	0.00417 0.00371	<1	<0.001 <0.001	<0.00959	<0.0002	0.00752 0.00731	0.487	<0.005 <0.005	<0.001
MVV-10 MW-10	11/13/2017	<0.002 NA	<0.001 NA	0.0453 NA	<0.001 NA	<0.001 NA	<0.002 NA	0.00371 NA	<1 1.44	<0.001 NA	<0.00959 NA	<0.0002 NA	0.00731 NA	1.41 NA	<0.005 NA	<0.001 NA
MW-10		<0.003	0.00535	NA <0.2	<0.004	<0.005		NA <0.005	2.49		<0.04	<0.0002	<pre>NA <0.01</pre>	0.246	NA <0.01	
MW-10 MW-10	5/8/2018 9/27/2018	<0.003 NA	0.00535	<0.2 NA	<0.004 NA	<0.005 NA	<0.005 <0.002	<0.005 NA	2.49	<0.005 NA	<0.04 NA	<0.0002 NA	<0.01 NA	0.246	<0.01 NA	<0.002 NA
MW-10	3/13/2019	NA <0.002	0.00153	0.021	<0.001	<0.001	<0.002	0.00112	2.38	<0.001	0.0187	NA <0.0002	<0.005	0.294	<0.005	NA <0.001
MW-10	9/12/2019	<0.002 NA	0.00407	0.021	<0.001 NA	<0.001	<0.002	0.00112	1.41	<0.001	0.0187	<0.0002 NA	<0.005	0.363	<0.005	<0.001 NA
MW-10	4/10/2020	NA <0.004	0.00501	<0.0127	<0.002	<0.001	<0.002	<0.00464	1.41	<0.001	0.00144	NA <0.0002	0.0105	1.29	<0.005	NA <0.002
IVIV - IU	4/10/2020	<0.004	0.00201	<0.02	<0.002	<0.001	<0.002	<0.002	1.92	<0.005	0.00934	<0.0002	0.00028	1.29	<0.002	<0.002

Analytical Results - Appendix IV Zimmer Gypsum Recycle Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-11	12/29/2015	< 0.0005	0.00194	0.00977	<0.001	<0.0004	0.000794	0.00920	0.175	< 0.0002	<0.008	<0.0001	0.00471	0.471	< 0.0006	< 0.0005
MW-11	3/16/2016	< 0.0005	0.00350	0.116	< 0.001	< 0.0004	< 0.0005	0.00422	0.0952	< 0.0002	0.0014	<0.0001	0.00219	0.523	< 0.0006	< 0.0005
MW-11	6/16/2016	< 0.002	<0.001	0.0539	< 0.001	<0.001	< 0.002	0.00192	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.525	< 0.005	<0.001
MW-11	9/27/2016	< 0.002	<0.001	0.0643	< 0.001	<0.001	< 0.002	0.00147	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.891	< 0.005	<0.001
MW-11	12/13/2016	< 0.002	<0.001	0.0921	< 0.001	<0.001	< 0.002	0.0019	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.600	< 0.005	<0.001
MW-11	3/10/2017	< 0.002	<0.001	0.0585	<0.001	<0.001	< 0.002	0.00176	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.525	< 0.005	<0.001
MW-11	6/8/2017	< 0.002	0.00166	0.0643	< 0.001	<0.001	< 0.002	0.00200	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.347	< 0.005	<0.001
MW-11	7/13/2017	< 0.002	<0.001	0.0589	<0.001	<0.001	< 0.002	0.00172	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.569	< 0.005	<0.001
MW-11	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-11	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.457	<0.01	< 0.002
MW-11	9/27/2018	NA	<0.001	NA	NA	NA	< 0.002	NA	<1	NA	NA	NA	NA	0.294	NA	NA
MW-11	3/13/2019	< 0.002	0.00123	0.0764	< 0.001	<0.001	< 0.002	0.00175	<1	<0.001	< 0.005	< 0.0002	< 0.005	0.531	< 0.005	<0.001
MW-11	9/12/2019	NA	0.00109	0.0493	NA	<0.001	< 0.002	0.00136	<1	<0.001	0.00609	NA	< 0.005	0.105	< 0.005	NA
MW-11	4/10/2020	< 0.004	< 0.002	0.0443	< 0.002	<0.001	< 0.002	< 0.002	0.170	< 0.005	< 0.002	< 0.0002	< 0.005	0.955	< 0.002	< 0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

Analytical Results - Appendix III Zimmer D Basin

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Background	Wells							
MW-1	12/30/2015	0.0720	155	48.5	0.200	7.2	90.1	544
MW-1	3/16/2016	0.0233	206	59.1	0.146	7.1	85.2	583
MW-1	6/16/2016	0.0389	154	59.6	<1	7.0	95.3	648
MW-1	8/31/2016	0.0431	168	73.4	<1	6.4	113	612
MW-1		0.0431	160	64.9	<1	7.1	93.1	621
MW-1	9/26/2016			79.2		7.1	112	
MW-1	10/12/2016 11/16/2016	0.0634 0.0304	156 162	79.2 57.7	<1 <1	6.4	90.6	571 596
MW-1	12/13/2016	0.0304	165	52.4	<1	7.0	90.0	590
MW-1	3/9/2017	<0.08	150	58.2	<1	8.3	85.9	589
MW-1	6/8/2017	<0.08	171	65.5	<1	7.1	87.0	582
MW-1	7/13/2017	<0.08	144	61.3	<1	7.0	79.0	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
MW-1	5/9/2018	<1	157	71.0	<1	7.0	88.9	631
MW-1	9/27/2018	<0.08	163	62.7	<1	6.9	113	578
MW-1	3/14/2019	<0.08	152	78.7	<1	7.0	90.2	617
MW-1	9/11/2019	<0.08	167	63.1	<1	7.0	90.6	637
MW-1	4/9/2020	0.123	170	80.5	<0.15	6.7	92.3	592
MW-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52.0	370
MW-8	3/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	6/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	9/27/2016	0.0413	119	13.1	<1	7.0	66.0	446
MW-8 MW-8	12/13/2016	0.0405	128	19.2	<1	7.0	65.2	455
MW-8	3/9/2017 6/8/2017	<0.08 <0.08	<u>114</u> 118	21.1 31.6	<1 <1	8.6 7.5	57.3 63.4	474 534
MW-8	7/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15.0	<1	6.8	<50	434
MW-8	5/8/2018	<1	127	33.8	<1	7.0	62.8	491
MW-8	9/27/2018	<0.08	121	14.5	<1	7.0	66.5	439
MW-8	3/14/2019	<0.08	117	23.8	<1	6.9	62.5	462
MW-8	9/11/2019	<0.08	129	34.0	<1	6.8	59.5	508
MW-8	4/9/2020	< 0.03	122	16.0	<0.15	6.8	65.2	421
MW-12	12/30/2015	0.300	179	27.3	0.145	7.1	127	608
MW-12	3/18/2016	0.220	200	66.0	0.172	6.8	99.8	666
MW-12	6/15/2016	0.273	159	42.4	<1	7.0	137	649
MW-12	9/27/2016	0.276	160	29.5	<1	7.1	110	600
MW-12 MW-12	12/13/2016 3/9/2017	0.241 0.246	151 160	31.0 42.9	<1 <1	6.9 8.4	88.8 113	555 610
MW-12	6/8/2017	0.246	168	39.6	<1	7.0	110	606
MW-12	7/13/2017	0.215	154	35.6	<1	6.9	105	579
MW-12	11/13/2017	0.199	146	30.0	<1	6.8	95.5	550
MW-12	5/9/2018	<1	143	30.7	<1	6.9	104	584
MW-12	9/19/2018	0.272	163	31.9	<1	6.8	104	577
MW-12	3/14/2019	0.256	147	33.2	<1	6.9	106	596
MW-12	9/11/2019	0.204	148	26.6	<1	7.7	90.0	557
MW-12	4/9/2020	0.210	162	32.5	<0.15	6.9	98.3	598

Analytical Results - Appendix III Zimmer D Basin

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Downgradier	nt Wells							
MW-9	12/30/2015	3.31	331	106	0.152	7.2	944	1770
MW-9	3/17/2016	1.98	363	111	0.139	7.0	789	1680
MW-9	6/15/2016	1.12	235	55.6	<1	7.2	630	1170
MW-9	9/27/2016	0.628	213	38.3	<1	7.2	512	989
MW-9	12/12/2016	1.96	280	71.8	<1	7.0	740	1430
MW-9	3/9/2017	2.65	300	104	<1	8.3	837	1680
MW-9	6/8/2017	0.521	262	72.6	<1	7.0	658	1240
MW-9	7/13/2017	1.30	291	<150	<1	7.1	729	1380
MW-9	11/13/2017	0.869	264	50.7	<1	7.0	650	1190
MW-9	5/9/2018	2.47	360	110	<1	6.9	905	1870
MW-9	9/19/2018	1.62	277	53.5	<1	6.8	658	1320
MW-9	3/14/2019	2.29	299	111	<1	7.0	995	1840
MW-9	9/11/2019	0.737	236	30.7	<1	8.3	495	1190
MW-9	4/9/2020	0.511	270	32.3	<0.15	6.9	589	1160
MW-13	12/29/2015	0.0968	220	13.9	0.280	7.2	328	710
MW-13	3/17/2016	0.0482	165	20.7	0.294	7.2	276	667
MW-13	6/15/2016	0.0739	134	39.9	<1	7.1	256	685
MW-13	9/27/2016	0.0594	163	21.9	<1	7.2	215	672
MW-13	12/13/2016	0.0612	162	19.6	<1	7.1	239	678
MW-13	3/9/2017	<0.08	140	17.3	<1	8.5	267	705
MW-13	6/8/2017	<0.08	154	17.2	<1	7.1	256	683
MW-13	7/13/2017	<0.08	149	15.9	<1	7.2	302	722
MW-13	11/13/2017	<0.08	151	19.0	<1	6.9	<250	667
MW-13	5/9/2018	<1	147	17.2	<1	7.1	236	674
MW-13	9/19/2018	<0.08	167	19.2	<1	6.9	260	732
MW-13	3/14/2019	0.0830	141	18.5	<1	7.1	260	717
MW-13	9/11/2019	<0.08	144	14.4	<1	7.6	146	616
MW-13	4/9/2020	0.0597	166	20.4	0.165	7.0	281	715

Analytical Results - Appendix III Zimmer D Basin

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
MW-14	12/29/2015	0.110	262	<0.7	<0.06	7.3	467	1010
MW-14	3/17/2016	0.0453	245	33.7	0.225	7.2	470	992
MW-14	6/15/2016	0.0595	172	<30	<1	7.1	348	837
MW-14	9/27/2016	0.0661	183	29.6	<1	7.1	303	814
MW-14	12/13/2016	0.0702	196	33.4	<1	7.0	365	905
MW-14	3/9/2017	<0.08	192	29.9	<1	8.4	408	916
MW-14	6/8/2017	<0.08	181	<30	<1	7.0	354	843
MW-14	7/13/2017	<0.08	198	30.8	<1	7.2	477	1020
MW-14	11/13/2017	<0.08	194	30.6	<1	7.0	340	893
MW-14	5/9/2018	<1	199	27.9	<1	7.1	398	947
MW-14	9/19/2018	<0.08	207	31.6	<1	6.9	416	1000
MW-14	3/14/2019	<0.08	186	29.5	<1	7.1	420	946
MW-14	9/11/2019	0.139	181	28.8	<1	7.4	287	836
MW-14	4/9/2020	0.116	213	40.0	0.179	7.4	427	939
MW-15	12/30/2015	0.110	296	31.1	0.298	7.1	505	1100
MW-15	3/18/2016	0.0557	233	34.0	0.290	6.9	447	1110
MW-15	6/15/2016	0.0737	213	34.9	<1	6.9	606	1120
MW-15	9/27/2016	0.0833	237	38.0	<1	7.1	493	1160
MW-15	12/13/2016	0.0816	247	38.2	<1	7.0	522	1140
MW-15	3/9/2017	<0.08	212	32.8	<1	8.4	505	1100
MW-15	6/8/2017	<0.08	226	32.4	<1	7.0	524	1090
MW-15	7/13/2017	<0.08	217	36.6	<1	7.1	549	1120
MW-15	11/13/2017	<0.08	224	36.5	<1	6.8	498	1110
MW-15	5/9/2018	<1	203	31.1	<1	7.0	414	1000
MW-15	9/19/2018	0.0939	240	38.7	<1	6.9	529	1170
MW-15	3/14/2019	0.0807	198	38.6	<1	6.9	486	1090
MW-15	9/11/2019	0.120	241	36.2	<1	7.4	535	1170
MW-15	4/9/2020	0.0790	258	41.1	0.175	7.4	567	1090

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer D Basin

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background Wells	3															
MW-1	12/30/2015	< 0.0005	0.00142	0.0655	< 0.001	< 0.0004	0.00191	< 0.0005	0.200	< 0.0002	< 0.008	< 0.0001	< 0.0005	0.348	< 0.0006	< 0.0005
MW-1	3/16/2016	< 0.00418	< 0.00295	0.0863	< 0.000875	< 0.00025	< 0.0025	< 0.000543	0.146	< 0.000433	0.0101	< 0.0001	< 0.0025	0.453	< 0.00398	< 0.00138
MW-1	6/16/2016	< 0.002	< 0.001	0.0601	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.603	< 0.005	< 0.001
MW-1	8/31/2016	< 0.002	< 0.001	0.0660	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0102	< 0.0002	< 0.005	0.0844	< 0.005	< 0.001
MW-1	9/26/2016	< 0.002	< 0.001	0.0627	< 0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.168	< 0.005	< 0.001
MW-1	10/12/2016	< 0.002	< 0.001	0.0639	< 0.001	<0.001	< 0.002	< 0.0005	<1	0.00268	<0.01	< 0.0002	< 0.005	0.489	< 0.005	< 0.001
MW-1	11/16/2016	< 0.002	< 0.001	0.0670	< 0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0097	< 0.0002	< 0.005	0.339	< 0.005	< 0.001
MW-1	12/13/2016	< 0.002	<0.001	0.0629	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.422	< 0.005	< 0.001
MW-1	3/9/2017	< 0.002	<0.001	0.0587	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0107	< 0.0002	<0.005	0.426	< 0.005	< 0.001
MW-1	6/8/2017	<0.002	<0.001	0.0643	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0116	< 0.0002	< 0.005	0.349	< 0.005	< 0.001
MW-1	7/13/2017	< 0.002	<0.001	0.0566	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	<0.005	0.144	< 0.005	< 0.001
MW-1	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-1	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.370	<0.01	< 0.002
MW-1	9/27/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.231	NA	NA
MW-1	3/14/2019	<0.002	<0.001	0.0665	<0.001	<0.001	0.0023	< 0.0005	<1	< 0.001	0.00665	< 0.0002	<0.005	0.171	<0.005	<0.001
MW-1	9/11/2019	NA	<0.001	0.0770	<0.001	NA	< 0.002	< 0.0005	<1	< 0.001	0.0109	NA	<0.005	0.110	<0.005	NA
MW-1	4/9/2020	< 0.004	< 0.002	0.0725	< 0.002	<0.001	< 0.002	< 0.002	<0.15	< 0.005	0.00964	< 0.0002	< 0.005	0.0302	< 0.002	< 0.002
MW-8	12/30/2015	< 0.0005	0.00115	0.0378	<0.001	< 0.0004	< 0.0005	< 0.0005	0.0766	< 0.0002	<0.008	<0.0001	< 0.0005	0.173	< 0.0006	< 0.0005
MW-8	3/16/2016	<0.00418	<0.00295	0.0681	<0.000875	<0.00025	< 0.0025	< 0.000543	0.106	< 0.000433	0.00635	<0.0001	<0.0025	0.408	< 0.00398	<0.00138
MW-8	6/15/2016	< 0.002	<0.001	0.0418	<0.001	<0.001	< 0.002	<0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.0694	< 0.005	< 0.001
MW-8	9/27/2016	<0.002	<0.001	0.0430	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	<0.005	0.214	< 0.005	<0.001
MW-8	12/13/2016	<0.002	<0.001	0.0458	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	< 0.00959	< 0.0002	<0.005	0.710	< 0.005	< 0.001
MW-8	3/9/2017	<0.002	<0.001	0.0423	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	<0.005	0.361	<0.005	<0.001
MW-8	6/8/2017	<0.002	<0.001	0.0491	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.0283	<0.005	<0.001
MW-8	7/13/2017	<0.002	<0.001	0.0447	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.269	<0.005	<0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	5/8/2018	<0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	<0.04	<0.0002	<0.01	0.182	<0.01	< 0.002
MW-8	9/27/2018	NA	<0.001	NA	NA	NA	<0.002	NA	<1	NA	NA	NA	NA	0.215	NA	NA
MW-8	3/14/2019	<0.002	<0.001	0.0454	<0.001	<0.001	0.00201	<0.0005	<1	<0.001	<0.005	< 0.0002	<0.005	0.0807	<0.005	<0.001
MW-8	9/11/2019	NA	<0.001	0.0552	<0.001	NA	0.00206	<0.0005	<1	<0.001	0.00754	NA	< 0.005	0.261	< 0.005	NA
MW-8	4/9/2020	<0.004	<0.002	0.0460	<0.002	<0.001	<0.002	< 0.002	<0.15	< 0.005	0.00464	< 0.0002	< 0.005	0.292	<0.002	<0.002
MW-12	12/30/2015	< 0.0005	0.00169	0.0697	< 0.001	< 0.0004	0.000518	< 0.0005	0.145	< 0.0002	<0.008	< 0.0001	< 0.0005	0.318	0.00131	< 0.0005
MW-12	3/18/2016	< 0.00418	< 0.00295	0.0813	< 0.000875	<0.00025	< 0.0025	< 0.000543	0.172	< 0.000433	0.00875	< 0.0001	< 0.0025	0.510	< 0.00398	< 0.00138
MW-12	6/15/2016	< 0.002	< 0.001	0.0605	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.130	< 0.005	< 0.001
MW-12	9/27/2016	< 0.002	< 0.001	0.0614	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	1.11	< 0.005	< 0.001
MW-12	12/13/2016	<0.002	< 0.001	0.0588	< 0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	<0.005	0.375	< 0.005	< 0.001
MW-12	3/9/2017	<0.002	< 0.001	0.0563	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	< 0.00959	< 0.0002	<0.005	0.429	< 0.005	< 0.001
MW-12 MW-12	6/8/2017	<0.002	< 0.001	0.0618	<0.001	<0.001	< 0.002	<0.0005 <0.0005	<1	<0.001 <0.001	<0.00959	< 0.0002	< 0.005	0.182	< 0.005	<0.001 <0.001
MVV-12 MW-12	7/13/2017 11/13/2017	<0.002 NA	<0.001 NA	0.0579 NA	<0.001 NA	<0.001 NA	<0.002 NA	<0.0005 NA	<1	<0.001 NA	<0.00959 NA	<0.0002 NA	<0.005 NA	0.288 NA	<0.005 NA	<0.001 NA
MW-12	5/9/2018	<0.003	NA <0.005	<0.2	NA <0.004	<0.005	<0.005	<0.005	<1 <1	NA <0.005	<0.04	NA <0.0002	<pre>NA <0.01</pre>	0.411	NA <0.01	<0.002
MW-12	9/19/2018	<0.003 NA	<0.005 NA	<0.2 NA	<0.004 NA	<0.005 NA	<0.005 NA	<0.005 NA	<1	<0.005 NA	<0.04 NA	<0.0002 NA	<0.01 NA	0.411	<0.01 NA	<0.002 NA
MW-12	3/14/2019	<0.002	<0.001	0.0631	<0.001	<0.001	0.00218	<0.0005	<1	<0.001	0.00543	<0.0002	<0.005	0.522	<0.005	<0.001
MW-12 MW-12	9/11/2019	<0.002 NA	<0.001	0.0631	<0.001	<0.001 NA	0.00218	<0.0005	<1	<0.001	0.00543	<0.0002 NA	<0.005	0.247	<0.005	<0.001 NA
MW-12	4/9/2020	<0.004	<0.001	0.0692	<0.001	<0.001	<0.00249	<0.0005	<0.15	<0.001	0.00114	<0.0002	<0.005	3.90	<0.005	<0.002

Analytical Results - Appendix IV Zimmer D Basin

Sample Location	Date Sampled	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot (pCi/L)	Selenium, total	Thallium, total
	•	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pci/L)	(mg/L)	(mg/L)
Downgradient W												•				
MW-9	12/30/2015	< 0.0005	0.00454	0.0450	<0.001	0.000721	0.00159	0.00327	0.152	0.00021	0.00836	<0.0001	0.00145	0.649	<0.0006	< 0.0005
MW-9	3/17/2016	<0.00418	<0.00295	0.0567	<0.000875	<0.00025	<0.0025	0.00406	0.139	< 0.000433	0.011	<0.0001	<0.0025	0.637	<0.00398	<0.00138
MW-9	6/15/2016	< 0.002	0.00127	0.0253	<0.001	<0.001	< 0.002	0.00253	<1	<0.001	<0.00959	<0.0002	< 0.005	0.573	< 0.005	<0.001
MW-9	9/27/2016	<0.002	0.00140	0.0239	<0.001	<0.001	<0.002	0.00202	<1	<0.001	<0.00959	<0.0002	< 0.005	0.841	<0.005	<0.001
MW-9	12/12/2016	<0.002	0.00151	0.0269	<0.001	<0.001	< 0.002	0.00299	<1	<0.001	<0.00959	<0.0002	< 0.005	1.07	< 0.005	<0.001
MW-9	3/9/2017	< 0.002	0.00161	0.0330	<0.001	<0.001	< 0.002	0.00403	<1	<0.001	0.0126	<0.0002	< 0.005	0.358	< 0.005	<0.001
MW-9	6/8/2017	<0.002	0.00257	0.0337	<0.001	<0.001	<0.002	0.00219	<1	<0.001	0.0124	<0.0002	< 0.005	0.32	<0.005	<0.001
MW-9	7/13/2017	< 0.002	0.00178	0.0308	<0.001	<0.001	< 0.002	0.00292	<1	<0.001	0.0116	<0.0002	< 0.005	0.729	< 0.005	<0.001
MW-9	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-9	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.446	<0.01	< 0.002
MW-9	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.342	NA	NA
MW-9	3/14/2019	< 0.002	0.00171	0.0333	<0.001	<0.001	< 0.002	0.00351	<1	< 0.001	0.00779	< 0.0002	< 0.005	0.323	< 0.005	<0.001
MW-9	9/11/2019	NA	0.00188	0.0261	< 0.001	NA	0.00237	0.00267	<1	< 0.001	0.0135	NA	< 0.005	0.372	< 0.005	NA
MW-9	4/9/2020	< 0.004	<0.002	0.0260	< 0.002	<0.001	< 0.002	0.00286	<0.15	< 0.005	0.00709	< 0.0002	< 0.005	6.29	< 0.002	< 0.002
MW-13	12/29/2015	0.000841	0.00260	0.0564	<0.001	< 0.0004	< 0.0005	0.00653	0.280	< 0.0002	<0.008	<0.0001	0.00495	0.574	0.000664	< 0.0005
MW-13	3/17/2016	<0.00418	0.00480	0.0691	< 0.000875	<0.00025	< 0.0025	0.00516	0.294	< 0.000433	0.00426	< 0.0001	0.00674	0.425	< 0.00398	< 0.00138
MW-13	6/15/2016	< 0.002	0.00264	0.0521	<0.001	<0.001	< 0.002	0.00641	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.459	< 0.005	<0.001
MW-13	9/27/2016	< 0.002	0.00460	0.0524	< 0.001	< 0.001	< 0.002	0.00514	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.612	< 0.005	< 0.001
MW-13	12/13/2016	< 0.002	0.00324	0.0536	< 0.001	< 0.001	< 0.002	0.00477	<1	< 0.001	< 0.00959	< 0.0002	0.005	0.646	< 0.005	< 0.001
MW-13	3/9/2017	< 0.002	0.00348	0.0516	< 0.001	< 0.001	< 0.002	0.00348	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.235	< 0.005	< 0.001
MW-13	6/8/2017	< 0.002	0.00319	0.0503	< 0.001	< 0.001	< 0.002	0.00237	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.284	< 0.005	< 0.001
MW-13	7/13/2017	< 0.002	0.00222	0.0446	< 0.001	< 0.001	< 0.002	0.00244	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.841	< 0.005	< 0.001
MW-13	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-13	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.565	< 0.01	< 0.002
MW-13	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.478	NA	NA
MW-13	3/14/2019	< 0.002	0.0183	0.0540	<0.001	<0.001	< 0.002	0.00295	<1	< 0.001	< 0.005	< 0.0002	< 0.005	0.284	< 0.005	< 0.001
MW-13	9/11/2019	NA	0.00525	0.0461	< 0.001	NA	0.00231	0.00368	<1	< 0.001	0.00811	NA	< 0.005	0.449	< 0.005	NA
MW-13	4/9/2020	< 0.004	0.00261	0.0477	< 0.002	< 0.001	< 0.002	0.00297	0.165	< 0.005	0.00266	< 0.0002	< 0.005	3.43	< 0.002	< 0.002

Analytical Results - Appendix IV Zimmer D Basin

Comula	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Sample Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-14	12/29/2015	0.00067	0.00263	0.0509	<0.001	< 0.0004	< 0.0005	0.00857	< 0.06	0.000291	<0.008	< 0.0001	0.00142	0.594	< 0.0006	< 0.0005
MW-14	3/17/2016	< 0.00418	< 0.00295	0.0641	<0.000875	<0.00025	<0.0025	0.00514	0.225	< 0.000433	0.00379	< 0.0001	0.00276	0.957	< 0.00398	< 0.00138
MW-14	6/15/2016	< 0.002	0.00171	0.0480	< 0.001	< 0.001	< 0.002	0.00547	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.534	< 0.005	< 0.001
MW-14	9/27/2016	< 0.002	0.00163	0.0464	< 0.001	< 0.001	< 0.002	0.00435	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.496	< 0.005	< 0.001
MW-14	12/13/2016	< 0.002	0.00173	0.0535	< 0.001	< 0.001	< 0.002	0.00563	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	1.36	< 0.005	< 0.001
MW-14	3/9/2017	< 0.002	0.00168	0.0465	< 0.001	< 0.001	< 0.002	0.00367	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.444	< 0.005	< 0.001
MW-14	6/8/2017	< 0.002	0.00158	0.0465	< 0.001	< 0.001	< 0.002	0.00278	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.318	< 0.005	< 0.001
MW-14	7/13/2017	< 0.002	0.00124	0.0440	< 0.001	< 0.001	< 0.002	0.00231	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.689	< 0.005	< 0.001
MW-14	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-14	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	< 0.01	0.618	<0.01	< 0.002
MW-14	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.933	NA	NA
MW-14	3/14/2019	< 0.002	<0.001	0.0507	<0.001	<0.001	0.00213	0.00229	<1	<0.001	< 0.005	< 0.0002	< 0.005	0.229	< 0.005	< 0.001
MW-14	9/11/2019	NA	0.00155	0.0554	< 0.001	NA	0.00254	0.00239	<1	< 0.001	0.00843	NA	< 0.005	1.94	< 0.005	NA
MW-14	4/9/2020	< 0.004	<0.002	0.0501	< 0.002	<0.001	< 0.002	0.00223	0.179	< 0.005	0.00236	< 0.0002	< 0.005	1.6	< 0.002	< 0.002
MW-15	12/30/2015	0.000823	0.00265	0.0896	<0.001	<0.0004	< 0.0005	0.0109	0.298	< 0.0002	<0.008	<0.0001	0.00554	0.59	< 0.0006	< 0.0005
MW-15	3/18/2016	<0.00418	< 0.00295	0.0835	< 0.000875	<0.00025	< 0.0025	0.00798	0.290	< 0.000433	0.00298	< 0.0001	0.00495	0.419	< 0.00398	< 0.00138
MW-15	6/15/2016	< 0.002	<0.001	0.0687	< 0.001	<0.001	< 0.002	0.00751	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.735	< 0.005	< 0.001
MW-15	9/27/2016	< 0.002	<0.001	0.0773	<0.001	<0.001	< 0.002	0.00778	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	1.26	< 0.005	< 0.001
MW-15	12/13/2016	< 0.002	<0.001	0.0767	< 0.001	<0.001	< 0.002	0.00701	<1	< 0.001	< 0.00959	< 0.0002	0.00524	0.936	< 0.005	<0.001
MW-15	3/9/2017	< 0.002	<0.001	0.0677	<0.001	<0.001	< 0.002	0.00593	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.556	< 0.005	< 0.001
MW-15	6/8/2017	< 0.002	<0.001	0.0663	<0.001	<0.001	< 0.002	0.00353	<1	< 0.001	<0.00959	< 0.0002	< 0.005	0.474	< 0.005	< 0.001
MW-15	7/13/2017	< 0.002	<0.001	0.0676	<0.001	<0.001	< 0.002	0.00427	<1	<0.001	<0.00959	<0.0002	<0.005	0.554	< 0.005	<0.001
MW-15	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-15	5/9/2018	< 0.003	<0.005	<0.2	< 0.004	<0.005	< 0.005	< 0.005	<1	<0.005	<0.04	<0.0002	<0.01	0.707	<0.01	<0.002
MW-15	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	1.08	NA	NA
MW-15	3/14/2019	<0.002	<0.001	0.0600	<0.001	<0.001	< 0.002	0.00318	<1	<0.001	<0.005	<0.0002	<0.005	0.783	<0.005	<0.001
MW-15	9/11/2019	NA	<0.001	0.0836	<0.001	NA	0.00257	0.00381	<1	<0.001	0.00845	NA	<0.005	0.756	<0.005	NA
MW-15	4/9/2020	< 0.004	<0.002	0.0663	<0.002	<0.001	< 0.002	0.00374	0.175	< 0.005	0.00213	<0.0002	<0.005	3.26	< 0.002	<0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

		Boron,	Calcium,	Chloride,	Fluoride,		Sulfate,	Total Dissolved
Sample	Date	total	total	total	total	pН	total	Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(STD)	(mg/L)	(mg/L)
ackground Wells		(0, 7				(-)		(0, 7
MW-3	1/27/2016	0.0275	244	181	0.127	7.1	47.2	777
MW-3	3/14/2016	0.0397	274	185	0.115	6.9	51.6	689
MW-3	6/14/2016	0.0191	168	159	<1	6.9	54.2	771
MW-3	9/29/2016	0.0276	174	161	<1	6.9	56.4	698
MW-3	12/20/2016	0.0453	170	201	<1	6.9	69.4	739
MW-3	4/18/2017	<0.08	178	195	<1	NA	53.1	792
MW-3	6/7/2017	<0.08	1/0	175	<1	7.3	<100	912
MW-3	7/12/2017	0.115	167	167	<1	6.9	<100	798
MW-3	3/12/2019	<0.08	107	206	<1	6.8	50	827
MW-3	9/11/2019	<0.08	176	154	<1	6.6	56.3	827
MW-3	4/7/2020	0.0416	170	193	<0.15	6.9	52.7	875
MW-13S	1/28/2016	0.03	148	133	0.278	7.2	34.3	479
MW-135	3/16/2016	0.0122	148	142	0.278	7.2	35.1	473
MW-135	4/20/2017	<0.08	94.2	128	<1	NA	37.4	526
MW-133	6/7/2017	<0.08	105	134	<1	6.9	36.5	520
MW-135	7/12/2017	<0.08	105	136	<1	6.9	<50	526
			105		<1 NA	7.0		
MW-135	11/14/2017	<0.08	-	141		-	<50	505
MW-13S	5/7/2018	<1	87.4	92.2	<1	7.1	31.3	448
MW-135	9/17/2018	<0.08	108	99.4	<1	6.7	30.9	517
MW-135	3/12/2019	<0.08	109	140	<1	7.1	36.9	499
MW-13S	4/7/2020	<0.03	72	81.9	0.209	7.1	27	308
MW-18	1/26/2016	0.101	138	19.8	0.259	7.2	187	670
MW-18	3/17/2016	0.0837	128	111	0.269	6.8	NA	679
MW-18	4/20/2017	0.0844	104	19.7	<1	NA	176	675
MW-18	6/7/2017	0.106	95.3	<30	<1	7.2	167	653
MW-18	7/12/2017	0.111	86.5	<30	<1	7.1	160	649
MW-18	11/15/2017	<0.08	78.9	18.1	NA	7.3	132	574
MW-18	5/7/2018	<1	83.6	17.4	<1	7.2	142	594
MW-18	9/27/2018	0.125	111	19.4	<1	7.1	219	676
MW-18	3/12/2019	<0.08	90.3	19.9	<1	7.2	153	595
MW-18	4/7/2020	<0.03	88.8	18.8	0.238	7.1	147	597
MW-21	1/28/2016	1.36	151	170	0.57	7	58.9	760
MW-21	3/14/2016	1.41	115	114	0.454	6.9	64.1	652
MW-21	6/13/2016	1.45	92.3	122	<1	7	93.7	687
MW-21	9/29/2016	1.23	93.6	134	<1	7.1	64.8	703
MW-21	12/20/2016	1.65	89.9	125	<1	7.0	64.3	704
MW-21	4/19/2017	1.34	81.4	148	<1	NA	69.8	698
MW-21	6/7/2017	1.88	74.2	153	<1	6.6	68.8	751
MW-21	7/12/2017	1.23	83	152	<1	7.2	65.9	748
MW-21	3/12/2019	1.22	85.2	168	<1	7.1	68.4	759
MW-21	9/11/2019	1.4	93	129	<1	7.2	66.4	687
MW-21	4/7/2020	1.36	90.2	174	0.635	7.3	73	1460
owngradient We	lls							
MW-9D	1/26/2016	0.576	130	197	0.212	7.2	0.6	773
MW-9D	3/16/2016	0.584	91.2	237	0.244	7.2	0.413	809
MW-9D	6/13/2016	0.6	92.5	207	<1	7.1	<5	781
MW-9D	9/29/2016	0.523	93.8	260	<1	7.2	<5	794
MW-9D	12/20/2016	0.81	101	270	<1	7.1	<5	827
MW-9D	4/19/2017	0.493	85.9	238	<1	NA	<5	793
MW-9D	6/7/2017	1.29	64.2	384	<1	6.4	<5	1080
MW-9D	7/12/2017	0.728	75.3	351	<1	7.2	<5	1080
MW-9D	11/14/2017	1.05	73.1	638	<1	7.0	<5	1000

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(STD)	(mg/L)	(mg/L)
MW-9D	5/8/2018	<1	75.1	301	<1	7.2	<5	852
MW-9D	9/18/2018	1.64	71.7	337	<1	7.1	<5	909
MW-9D	3/13/2019	0.499	90.4	206	<1	7.1	<5	790
MW-9D	9/11/2019	0.73	84.4	193	<1	7.1	<5	849
MW-9D	4/7/2020	0.618	93.4	233	0.308	7.1	<5	812
MW-11D	1/27/2016	0.197	100	7.02	0.264	7.3	10.7	369
MW-11D	3/16/2016	0.174	76	5.84	0.285	7.2	10.1	364
MW-11D	6/13/2016	0.172	74	6.11	<1	7.3	13.3	364
MW-11D	9/29/2016	0.147	80.3	6.5	<1	7.1	11.4	363
MW-11D	12/20/2016	0.221	78.3	11.9	<1	7.2	9.29	402
MW-11D	4/18/2017	0.156	74.1	5.2	<1	NA	11.9	360
MW-11D	6/7/2017	0.205	72.4	5.14	<1	7.4	12.1	361
MW-11D	7/12/2017	0.163	70.5	5.01	<1	7.1	11.3	355
MW-11D	11/14/2017	0.179	76.6	6.17	<1	6.8	8	381
MW-11D	5/8/2018	<1	71.5	5.15	<1	7.2	11.8	389
MW-11D	9/18/2018	0.207	78.2	5.56	<1	7.0	12.8	367
MW-11D	3/13/2019	0.156	76.3	5.06	<1	7.2	11.3	385
MW-11D	9/11/2019	0.169	75.2	3.67	<1	7.3	11.9	352
MW-11D	4/7/2020	0.172	76.6	5.4	0.286	7.3	11.4	367
MW-16D	1/28/2016	1.01	70.2	62.5	0.546	7.4	0.6	516
MW-16D	3/15/2016	1.06	59.9	57	0.456	7.2	0.18	505
MW-16D	6/14/2016	1.11	51.1	56.7	<1	7.3	<5	522
MW-16D	9/29/2016	0.934	50.9	64	<1	7.2	<5	530
MW-16D	12/20/2016	1.28	50.6	57	<1	7.3	<5	528
MW-16D	4/18/2017	0.91	45.9	57	<1	NA	<5	504
MW-16D	6/7/2017	1.11	48.7	53.3	<1	6.7	<5	521
MW-16D	7/12/2017	0.839	48	53.5	<1	7.3	<5	520
MW-16D	11/15/2017	1.02	48.7	61.2	<1	7.2	<5	533
MW-16D	5/7/2018	<1	50.2	57.9	<1	7.3	<5	537
MW-16D	9/18/2018	1.2	54.4	60.2	<1	7.1	<5	520
MW-16D	3/12/2019	0.895	51.5	59.5	<1	7.3	<5	541
MW-16D	9/11/2019	0.979	51	56.6	<1	7.0	<5	514
MW-16D	4/7/2020	0.922	51.7	58.2	0.502	7.3	<5	536
MW-20D	1/28/2016	0.256	136	39.9	0.273	7.2	17.6	368
MW-20D	3/15/2016	0.446	95.1	34.6	0.224	7.1	19.4	375
MW-20D	6/14/2016	0.241	71.2	13.7	<1	7.3	<25	326
MW-20D MW-20D	9/29/2016	0.225	83 84.7	24.5 44	<1 <1	7.1	19.6	344 399
MW-20D MW-20D	12/20/2016 4/18/2017	0.323	84.7	12.3	<1 <1	7.1 NA	17.8 20.1	399
MW-20D	6/7/2017	0.207	77.2	12.3	<1	7.1	19.6	328
MW-20D	7/13/2017	0.281	73.1	13.3	<1	7.1	<25	332
MW-20D	11/15/2017	0.221	76.5	17.9	<1	7.0	20.9	347
MW-20D	5/7/2018	<1	70.5	14.6	<1	7.1	20.9	337
MW-20D	9/17/2018	0.29	80.2	24.1	<1	6.9	19.3	371
MW-20D	3/12/2019	0.224	81.5	23.4	<1	7.2	18.9	353
MW-20D	9/12/2019	0.274	85.3	23.4	<1	6.7	10.5	362
MW-20D	4/7/2020	0.245	80.2	22.8	0.272	7.3	18.9	347
MW-22	1/26/2016	0.532	180	45.5	0.06	7.0	10.5	621
MW-22	3/16/2016	0.552	107	31.9	0.333	7.0	81.9	550
MW-22	6/13/2016	0.372	107	25.9	<1	7.0	79.5	531
MW-22	9/29/2016	0.364	100	35.4	<1	7.0	94	557
MW-22	12/20/2016	0.575	114	38.7	<1	6.9	91.9	601
MW-22	4/19/2017	0.457	112	38.9	<1	NA	94.2	584

		Boron,	Calcium,	Chloride,	Fluoride,		Sulfate,	Total Dissolved
Sample	Date	total	total	total	total	рН	total	Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(STD)	(mg/L)	(mg/L)
MW-22	6/7/2017	0.443	113	<30	<1	7.2	83.1	547
MW-22	7/25/2017	0.448	99.7	34.6	<1	6.9	92.9	569
MW-22	11/14/2017	0.522	121	39	<1	6.7	101	604
MW-22	5/8/2018	<1	114	32.1	<1	7.0	99.7	585
MW-22	9/18/2018	0.521	122	37.3	<1	6.9	91	595
MW-22	3/13/2019	0.392	118	36.9	<1	7.0	96.1	590
MW-22	9/11/2019	0.466	117	36.4	<1	6.9	93.7	589
MW-22	4/8/2020	0.431	118	35	0.289	6.9	93.4	558
MW-24	1/27/2016	0.175	75.6	4.46	0.418	7.8	17.2	248
MW-24	3/15/2016	0.178	57.2	5.84	0.348	7.4	19	233
MW-24	6/14/2016	0.144	45.4	5.89	<1	7.5	<25	242
MW-24	9/29/2016	0.15	50.4	6.3	<1	7.4	22.3	245
MW-24	12/20/2016	0.213	49.4	6.61	<1	7.5	23	252
MW-24	4/18/2017	0.146	43.3	5.66	<1	NA	21.8	236
MW-24	6/7/2017	0.164	46.2	5.65	<1	7.6	22.8	232
MW-24	7/12/2017	0.139	47.1	6.22	<1	7.6	<25	246
MW-24	11/14/2017	0.183	51.4	6.84	<1	7.1	26.5	260
MW-24	5/7/2018	<1	46.3	6.74	<1	7.5	25.1	245
MW-24	9/27/2018	0.217	53.4	6.46	<1	7.4	25.2	251
MW-24	3/12/2019	0.13	54.9	9.41	<1	7.4	36.3	269
MW-24	9/11/2019	0.184	53.4	5.8	<1	7.4	27.1	246
MW-24	4/8/2020	0.172	54.5	6.33	0.35	7.2	24.4	238
MW-D	1/28/2016	4.26	5.1	23.5	2.11	8.7	12.8	532
MW-D	3/15/2016	5	5.18	23.9	1.86	8.5	13.8	532
MW-D	6/14/2016	5.99	4.01	25.6	1.80	8.7	13.0	518
MW-D	9/30/2016	4.31	3.51	29.4	1.99	7.2	12.7	524
MW-D	12/21/2016	5.92	8.19	32.1	1.91	8.5	12.9	562
MW-D	4/18/2017	4.72	3.09	39	2.11	NA	13.9	565
MW-D	6/7/2017	5.22	2.75	35.4	2.11	6.9	13.3	559
MW-D	7/12/2017	4.03	2.81	29.9	2.13	8.2	13.2	545
MW-D	11/14/2017	5.69	3.55	26.2	2.63	8.2	14.1	527
MW-D	5/8/2018	4.62	3.17	32.5	2.03	8.2	14.1	544
MW-D	9/18/2018	5.3	3.43	30.7	1.9	7.7	12.6	532
MW-D	3/13/2019	4.18	2.93	29.6	2.2	8.4	12.0	533
MW-D	9/11/2019	4.18	3.42	23.0	1.95	8.2	12.3	508
MW-D	4/8/2020	4.41	3.84	22.3	2.04	8.2	12.5	508
MW-E	1/27/2016	3.8	141	338	1.25	8.4	78.1	978
MW-E	3/17/2016	3.03	74.9	152	0.28	8.1	96.8	819
MW-E	6/14/2016	2.03	58.8	131	<1	7.4	<50	572
MW-E	9/30/2016	1.9	59.7	96.9	1.03	7.6	34.1	475
MW-E	12/21/2016	3.74	56.6	114	<1	7.4	36.7	596
MW-E	4/18/2017	0.999	46.5	21.4	<1	NA	30	376
MW-E	6/7/2017	1.08	46.9	<30	<1	6.9	24.8	372
MW-E	7/25/2017	0.934	48.2	21.5	<1	7.5	25.9	385
MW-E	11/14/2017	2.08	51	43.1	<1	7.1	27.4	448
MW-E	5/8/2018	<1	45.2	14.8	<1	7.3	20	345
MW-E	9/18/2018	0.968	55.8	19.9	<1	7.2	19.5	361
MW-E	3/13/2019	0.805	50.7	17.6	<1	7.3	20.5	361
MW-E	9/11/2019	1.01	51.2	25.6	<1	7.3	40	450
MW-E	4/8/2020	0.758	55.3	14.2	0.782	7.3	18.4	330
MW-F	1/28/2016	4.11	265	515	1.02	7.4	164	1440
MW-F	3/18/2016	4.78	134	483	0.674	6.9	165	1440
MW-F	6/14/2016	8.38	139	561	<1	7.1	159	1490

Sample Location	Date Sampled	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	рН (STD)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-F	9/30/2016	4.37	114	572	1.05	7.2	167	1440
MW-F	12/21/2016	6.64	133	685	<1	7.1	177	1760
MW-F	4/18/2017	5.05	106	522	<1	NA	206	1580
MW-F	6/7/2017	5.36	103	582	<1	6.6	<250	1610
MW-F	7/25/2017	4.88	100	766	<1	7.2	<250	1500
MW-F	11/15/2017	5.83	113	531	<1	7.0	185	1420
MW-F	5/8/2018	6.14	93.1	628	<1	7.3	181	1620
MW-F	9/18/2018	4.79	105	568	<1	6.9	158	1510
MW-F	3/13/2019	4.04	92.3	548	<1	7.3	169	1490
MW-F	9/11/2019	4.42	98.4	506	<2.5	7.3	151	1390
MW-F	4/8/2020	1.16	72.7	120	0.607	7.2	105	564
MW-G	1/27/2016	0.79	97.1	131	0.597	7.3	6.66	671
MW-G	3/15/2016	1.22	88.1	156	0.359	7.2	2.98	659
MW-G	6/14/2016	1.04	65.2	158	<1	7.3	<5	674
MW-G	9/30/2016	0.738	67.6	155	<1	7.2	<5	672
MW-G	12/14/2016	0.979	66.9	158	<1	7.2	<5	685
MW-G	4/18/2017	0.94	65.5	155	<1	NA	<5	699
MW-G	6/7/2017	1.08	64.7	162	<1	7.2	<5	707
MW-G	7/13/2017	0.892	63.1	166	<1	7.1	<5	719
MW-G	11/15/2017	1.22	70.6	189	<1	7.2	<5	712
MW-G	5/7/2018	<1	60.1	167	<1	7.2	<5	711
MW-G	9/17/2018	1.24	69.1	173	<1	6.9	<5	744
MW-G	3/12/2019	0.875	68.3	180	<1	7.2	<5	704
MW-G	9/11/2019	1.03	70.2	151	<1	7.2	<5	693
MW-G	4/8/2020	0.869	68.4	172	0.502	7.1	<5.	665
MW-H	1/27/2016	0.481	148	95.8	0.679	7.3	25.1	622
MW-H	3/15/2016	0.563	134	124	0.384	7.0	40.1	640
MW-H	6/14/2016	0.617	129	127	<1	7.0	<50	705
MW-H	9/30/2016	0.469	111	119	<1	7.0	26	621
MW-H	12/20/2016	0.65	107	116	<1	7.0	21.9	624
MW-H	4/18/2017	0.494	105	110	<1	NA	25.9	671
MW-H	6/7/2017	0.576	103	129	<1	6.8	38.5	726
MW-H	7/25/2017	0.56	120	159	<1	6.8	37.1	724
MW-H	11/15/2017	0.678	121	138	<1	7.0	32.8	677
MW-H	5/7/2018	<1	105	123	<1	7.1	36.2	729
MW-H	9/18/2018	0.674	122	120	<1	6.9	39	722
MW-H	3/12/2019	0.548	114	132	<1	7.0	39.6	671
MW-H	9/12/2019	0.627	118	105	<1	6.7	29	629
MW-H	4/8/2020	0.58	114	126	0.443	6.9	34.4	637
Sequence 1 leac	2/26/2019	9.53	1040	1420	1.77	NA	1830	6370
Sequence 1 leac	4/9/2020	4.81	363	1420	0.845	NA	1780	5820

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; s.u. - standard units.

r	r		1			. 			. 	.		T	т	Dedition 22C :		.
		•					a .			1 !				Radium-226 +		
		Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Cobalt,	Fluoride,	Lead,	Lithium,	Mercury,	Molybdenum,	Radium 228,	Selenium,	Thallium,
Sample	Date	total	total	total	total	total	total	total	total	total	total	total	total	total	total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background Wells							<u> </u>									
MW-3	1/27/2016	<0.02	<0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.127	<0.005	0.0093	0.0002	<0.01	<0.384	<0.01	<0.001
MW-3	3/14/2016	0.000743	0.00594	0.0464	<0.002	<0.001	< 0.003	<0.005	0.115	<0.005	0.00807	0.0002	<0.01	0.632	<0.01	0.00159
MW-3	6/14/2016	<0.002	<0.001	0.042	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	< 0.05	0.0002	<0.005	0.499	<0.005	<0.001
MW-3	9/29/2016	<0.002	<0.001	0.0455	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	<0.05	0.0002	<0.005	0.514	< 0.005	<0.001
MW-3	12/20/2016	<0.002	<0.001	0.0482	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	< 0.005	<0.001
MW-3	4/18/2017	<0.002	<0.001	0.0413	< 0.001	< 0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-3	6/7/2017	<0.002	<0.001	0.0495	< 0.001	< 0.001	< 0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-3	7/12/2017	<0.002	<0.001	0.0455	< 0.001	< 0.001	<0.002	< 0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	< 0.005	<0.001
MW-3	5/7/2018	<0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	NA	< 0.005	< 0.04	0.0002	<0.01	<5	< 0.01	< 0.002
MW-3	3/12/2019	<0.002	< 0.001	0.0468	<0.001	< 0.001	<0.002	<0.0005	<1	<0.001	0.0134	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-3	9/17/2018	NA	< 0.001	0.0637	NA	NA	<0.002	NA	NA	NA	0.014	NA	NA	<5	NA	NA
MW-3	9/11/2019	NA	< 0.001	0.0595	< 0.001	< 0.001	<0.002	<0.0005	<1	< 0.001	0.0161	NA	< 0.005	<5	< 0.005	NA
MW-3	4/7/2020	< 0.004	<0.002	0.0515	<0.002	<0.001	<0.002	<0.002	<0.150	<0.005	0.00844	<0.0002	<0.005	1.16	<0.002	<0.002
MW-13S	1/28/2016	<0.02	< 0.005	<0.2	<0.02	<0.01	< 0.003	0.0005	0.278	< 0.005	0.0123	0.0002	<0.01	0.421	<0.01	< 0.001
MW-13S	3/16/2016	<0.01	<0.025	0.0519	<0.01	<0.005	<0.015	<0.025	0.761	<0.025	0.0138	0.0002	<0.05	0.853	<0.05	<0.005
MW-13S	4/20/2017	<0.002	< 0.001	0.0344	<0.001	< 0.001	< 0.002	<0.0005	<1	< 0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-13S	6/7/2017	<0.002	< 0.001	0.0325	<0.001	<0.001	< 0.002	<0.0005	<1	< 0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-13S	7/12/2017	< 0.002	< 0.001	0.0447	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-13S	5/7/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	0.0002	<0.01	<5	< 0.01	< 0.002
MW-135	3/12/2019	< 0.002	< 0.001	0.0349	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0138	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-135	9/17/2018	NA	<0.001	0.0579	NA	NA	0.00216	NA	<1	NA	0.0121	NA	NA	<5	NA	NA
MW-135	4/7/2020	< 0.004	<0.002	0.0331	<0.002	<0.001	< 0.002	< 0.002	0.209	< 0.005	0.00424	< 0.0002	< 0.005	0.273	<0.002	< 0.002
MW-18	1/26/2016	< 0.02	< 0.005	<0.2	<0.02	<0.01	0.00782	0.0005	0.259	< 0.005	0.101	0.0002	<0.01	<0.747	<0.01	<0.001
MW-18	3/17/2016	< 0.01	<0.025	0.02	<0.01	< 0.005	<0.015	0.000605	0.269	<0.025	0.112	0.0002	<0.05	1.1	< 0.05	<0.005
MW-18	4/20/2017	< 0.002	< 0.001	0.016	< 0.001	< 0.001	< 0.002	0.00101	<1	0.00147	0.0898	0.0002	< 0.005	<5	< 0.005	<0.001
MW-18	6/7/2017	< 0.002	<0.001	0.019	< 0.001	< 0.001	0.00263	0.00333	<1	0.00224	0.0877	0.0002	< 0.005	<5	< 0.005	<0.001
MW-18	7/12/2017	0.00309	< 0.001	0.0124	< 0.001	< 0.001	< 0.002	0.00103	<1	<0.001	0.0886	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-18	5/7/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	0.0747	0.0002	< 0.01	<5	< 0.01	< 0.002
MW-18	9/27/2018	NA	< 0.001	0.0213	NA	NA	0.00203	NA	<1	NA	0.099	NA	NA	<5	NA	NA
MW-18	3/12/2019	<0.002	<0.001	< 0.01	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	0.0816	0.0002	< 0.005	<5	< 0.005	<0.001
MW-18	4/7/2020	< 0.004	< 0.002	< 0.02	< 0.002	< 0.001	< 0.002	< 0.002	0.238	< 0.005	0.066	<0.0002	< 0.005	0.309	< 0.002	< 0.002
MW-21	1/28/2016	<0.02	<0.002	<0.02	<0.02	<0.01	<0.002	0.0005	0.57	<0.005	0.0773	0.0002	<0.005	1.39	<0.01	<0.002
MW-21	3/14/2016	<0.02	0.00362	0.0717	<0.02	<0.01	0.00113	< 0.005	0.454	< 0.005	0.0626	0.0002	<0.01	1.18	<0.01	0.00132
MW-21	6/13/2016	<0.002	< 0.001	0.0663	<0.002	<0.001	< 0.00113	<0.0005	<1	<0.003	0.0639	0.0002	<0.001	1.18	<0.01	< 0.00132
MW-21	9/29/2016	<0.002	<0.001	0.0694	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0659	0.0002	<0.005	1.49	< 0.005	<0.001
MW-21	12/20/2016	<0.002	<0.001	0.0694	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0684	0.0002	<0.005	<5	< 0.005	<0.001
MW-21	4/19/2017	<0.002	<0.001	0.0631	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0722	0.0002	<0.005	<5	< 0.005	<0.001
MW-21	6/7/2017	<0.002	<0.001	0.0909	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0722	0.0002	<0.005	<5	< 0.005	<0.001
MW-21	7/12/2017	0.00238	<0.001	0.0909	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0893	0.0002	<0.005	<5	< 0.005	<0.001
MW-21	5/7/2018	<0.00238	< 0.001	<0.2	<0.001	<0.001	<0.002	< 0.0005	NA	< 0.001	0.0783	0.0002	<0.003	<5	<0.003	<0.001
MW-21	9/27/2018	NA	< 0.003	0.0768	<0.004 NA	NA	< 0.003	NA	NA	NA	0.0773	0.0002 NA	NA	<5	NA	<0.002 NA
MW-21 MW-21	3/12/2018	NA <0.002	<0.001	0.0768	NA <0.001	NA <0.001	<0.002	NA <0.0005	NA <1	NA <0.001	0.07	0.0002	NA <0.005	<5	NA <0.005	<0.001
MW-21	9/11/2019	<0.002 NA	<0.001	0.0777	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0735	0.0002 NA	<0.005	<5	< 0.005	<0.001 NA
MW-21 MW-21	4/7/2020	NA <0.004	<0.001	0.0833	<0.001	<0.001	<0.002	<0.0005	<1 0.635	<0.001	0.0735	NA <0.0002	<0.005	<5 0.596	< 0.005	NA <0.002
Downgradient Wel		NU.004	<u><u></u>\0.002</u>	0.0944	<u><u></u>\0.002</u>	<0.001	<u>\0.002</u>	NU.UUZ	0.055	<0.005	0.0707	NU.UUU2	<0.005	0.390	<u>\0.002</u>	<u><u></u>\0.002</u>
3		<0.02	<0.005	0.622	<0.02	<0.01	< 0.003	0.0005	0.212	<0.005	0.0414	0.0002	<0.01	2.09	<0.01	<0.001
MW-9D	1/26/2016					<0.01		0.0005	0.212				<0.01	2.98	< 0.01	<0.001
MW-9D	3/16/2016	< 0.002	0.0635	0.581	<0.002	4e-04	0.0114	0.0024	0.244	0.000638	0.0427	0.0002	<0.01	3.35	0.00262	<0.001
MW-9D	6/13/2016	<0.002	0.00434	0.551	<0.001	<0.001	< 0.002	0.00209	<1	0.0012	< 0.05	0.0002	< 0.005	2.47	<0.005	<0.001
MW-9D	9/29/2016	< 0.002	0.00485	0.6	<0.001	<0.001	<0.002	0.002	<1	< 0.001	< 0.05	0.0002	<0.005	2.64	< 0.005	<0.001
MW-9D	12/20/2016	<0.002 <0.002	0.00506	0.642	<0.001 <0.001	<0.001 <0.001	0.00936	0.00827	<1 <1	0.00498 0.00187	0.0585	0.0002	<0.005 <0.005	5.02 <5	<0.005 <0.005	<0.001 <0.001
MW-9D	4/19/2017															

														Radium-226 +		
	_	Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Cobalt,	Fluoride,	Lead,	Lithium,	Mercury,	Molybdenum,	Radium 228,	Selenium,	Thallium,
Sample	Date	total	total	total	total	total	total	total	total	total	total	total	total	total	total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-9D	6/7/2017	<0.002	0.00164	0.773	<0.001	<0.001	0.0021	0.00365	<1	0.00155	0.075	0.0002	<0.005	<5	<0.005	<0.001
MW-9D	7/12/2017	<0.002	0.00139	0.613	<0.001	<0.001	<0.002	0.00176	<1	<0.001	0.0567	0.0002	<0.005	<5	<0.005	<0.001
MW-9D	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-9D	5/8/2018	< 0.003	< 0.005	0.677	< 0.004	<0.005	<0.005	< 0.005	<1	<0.005	0.0526	0.0002	<0.01	<5	<0.01	<0.002
MW-9D	9/18/2018	NA	0.00319	0.757	NA	NA	0.00953	NA	<1	NA	0.0995	NA	NA	<5	NA	NA
MW-9D	3/13/2019	<0.002	0.00408	0.501	<0.001	<0.001	<0.002	0.000887	<1	< 0.001	0.0396	0.0002	< 0.005	<5	< 0.005	<0.001
MW-9D	9/11/2019	NA	0.00265	0.608	< 0.001	< 0.001	< 0.002	0.00193	<1	< 0.001	0.0523	NA	< 0.005	<5	< 0.005	NA
MW-9D	4/7/2020	< 0.004	0.00423	0.627	<0.002	<0.001	< 0.002	< 0.002	0.308	< 0.005	0.0364	<0.0002	< 0.005	2.9	<0.002	< 0.002
MW-11D	1/27/2016	< 0.02	< 0.005	0.202	0.01	0.004	0.00351	0.0005	0.264	< 0.005	0.00852	0.0002	< 0.01	0.519	< 0.01	< 0.001
MW-11D	3/16/2016	< 0.002	0.0577	0.174	< 0.002	4e-04	0.0106	0.000505	0.285	< 0.005	0.00711	0.0002	< 0.01	0.403	0.00174	< 0.001
MW-11D	6/13/2016	< 0.002	0.0019	0.16	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	0.823	< 0.005	< 0.001
MW-11D	9/29/2016	<0.002	0.00155	0.181	<0.001 <0.001	<0.001 <0.001	<0.002 <0.002	<0.0005 <0.0005	<1 <1	<0.001	<0.05 <0.05	0.0002	<0.005 <0.005	0.265	<0.005 <0.005	<0.001 <0.001
MW-11D MW-11D	12/20/2016 4/18/2017	<0.002 <0.002	<0.001 0.00201	0.171	<0.001	<0.001	<0.002	< 0.0005	<1 <1	<0.001 <0.001	<0.05	0.0002	< 0.005	<5 <5	<0.005	<0.001
				0.149												
MW-11D MW-11D	6/7/2017 7/12/2017	<0.002 <0.002	0.00186	0.164	<0.001 <0.001	<0.001 <0.001	<0.002 <0.002	<0.0005 <0.0005	<1 <1	<0.001 <0.001	<0.05 <0.05	0.0002	<0.005 <0.005	<5 <5	<0.005 <0.005	<0.001 <0.001
MW-11D MW-11D	11/14/2017	<0.002 NA	0.00227 NA	0.154 NA	<0.001 NA	<0.001 NA	<0.002 NA	<0.0005 NA	<1	×0.001 NA	<0.05 NA	0.0002 NA	<0.005 NA	×5 NA	<0.005 NA	<0.001 NA
MW-11D MW-11D	5/8/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	0.0002	<0.01	<5	<0.01	<0.002
MW-11D MW-11D	9/18/2018	NA	0.00221	0.188	<0.004 NA	<0.005 NA	<0.003	NA	<1	NA	0.00938	0.0002 NA	NA	<5	NA	<0.002 NA
MW-11D MW-11D	3/13/2018	<0.002	0.00191	0.188	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.00338	0.0002	<0.005	<5	<0.005	<0.001
MW-11D MW-11D	9/11/2019	<0.002 NA	0.00255	0.101	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	0.0103	0.0002 NA	<0.005	<5	< 0.005	<0.001 NA
MW-11D MW-11D	4/7/2020	<0.004	0.00233	0.174	<0.001	<0.001	<0.002	< 0.0003	0.286	<0.001	0.00696	<0.0002	<0.005	1.12	<0.003	<0.002
MW-11D MW-16D	1/28/2016	<0.004	0.0052	<0.2	<0.02	<0.01	<0.002	0.0002	0.546	<0.005	0.0394	0.0002	<0.005	<0.368	<0.002	<0.002
MW-16D	3/15/2016	<0.02	0.0032	0.126	<0.02	<0.01	< 0.003	< 0.005	0.456	<0.005	0.0439	0.0002	0.00146	0.35	<0.01	0.000731
MW-16D	6/14/2016	<0.002	0.00579	0.120	<0.002	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	0.254	<0.005	< 0.001
MW-16D	9/29/2016	<0.002	0.00539	0.108	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	0.563	<0.005	<0.001
MW-16D	12/20/2016	<0.002	0.00513	0.100	<0.001	< 0.001	<0.002	< 0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-16D	4/18/2017	<0.002	0.00837	0.105	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-16D	6/7/2017	<0.002	0.00859	0.121	< 0.001	< 0.001	< 0.002	< 0.0005	<1	<0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-16D	7/12/2017	<0.002	0.00529	0.106	<0.001	< 0.001	< 0.002	< 0.0005	<1	<0.001	<0.25	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-16D	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-16D	5/7/2018	< 0.003	0.0105	<0.2	< 0.004	< 0.005	0.00519	<0.005	<1	< 0.005	0.0416	0.0002	<0.01	<5	<0.01	<0.002
MW-16D	9/18/2018	NA	0.00724	0.13	NA	NA	< 0.002	NA	<1	NA	0.0435	NA	NA	<5	NA	NA
MW-16D	3/12/2019	< 0.002	0.00904	0.106	<0.001	0.00265	< 0.002	< 0.0005	<1	<0.001	0.0471	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-16D	9/11/2019	NA	0.00654	0.112	< 0.001	< 0.001	< 0.002	< 0.0005	<1	<0.001	0.0448	NA	< 0.005	<5	< 0.005	NA
MW-16D	4/7/2020	< 0.004	0.00891	0.119	<0.002	< 0.001	<0.002	< 0.002	0.502	< 0.005	0.0363	< 0.0002	< 0.005	0.413	< 0.002	<0.002
MW-20D	1/28/2016	<0.02	<0.005	<0.2	<0.02	< 0.01	< 0.003	0.0005	0.273	<0.005	0.017	0.0002	<0.01	0.395	<0.01	< 0.001
MW-20D	3/15/2016	0.000643	0.00432	0.152	< 0.002	< 0.001	0.000585	< 0.005	0.224	<0.005	0.0169	0.0002	0.00662	0.819	< 0.01	0.00133
MW-20D	6/14/2016	< 0.002	0.00103	0.116	< 0.001	<0.001	< 0.002	< 0.0005	<1	0.001	< 0.05	0.0002	< 0.005	0.462	< 0.005	< 0.001
MW-20D	9/29/2016	< 0.002	< 0.001	0.142	< 0.001	<0.001	<0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	0.00573	0.714	<0.005	<0.001
MW-20D	12/20/2016	< 0.002	0.00116	0.141	<0.001	<0.001	<0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	0.0052	<5	<0.005	<0.001
MW-20D	4/18/2017	<0.002	0.00111	0.114	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	< 0.005	<0.001
MW-20D	6/7/2017	<0.002	0.00113	0.141	<0.001	<0.001	<0.002	<0.0005	<1	< 0.001	<0.05	0.0002	0.00515	<5	<0.005	<0.001
MW-20D	7/13/2017	<0.002	0.00123	0.128	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	< 0.005	<5	<0.005	<0.001
MW-20D	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-20D	5/7/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	0.0002	<0.01	<5	<0.01	<0.002
MW-20D	9/17/2018	NA	0.00124	0.149	NA	NA	<0.002	NA	<1	NA	0.0147	NA	NA	<5	NA	NA
MW-20D	3/12/2019	< 0.002	0.00125	0.14	<0.001	<0.001	<0.002	< 0.0005	<1	< 0.001	0.0163	0.0002	0.00525	<5	<0.005	<0.001
MW-20D	9/12/2019	NA	0.00187	0.162	<0.001	<0.001	0.0026	0.000771	<1	< 0.001	0.0201	NA	0.00565	<5	<0.005	NA
MW-20D	4/7/2020	<0.004	<0.002000	0.147	<0.002	<0.001	<0.002	<0.002	0.272	<0.005	0.0129	<0.0002	0.00587	0.349	<0.002	<0.002
MW-22	1/26/2016	<0.02	< 0.005	<0.2	<0.02	<0.01	<0.003	0.0005	0.06	<0.005	0.0275	0.0002	<0.01	0.92	< 0.01	< 0.001
MW-22	3/16/2016	< 0.002	0.0737	0.0535	< 0.002	4e-04	0.0113	0.000745	0.333	< 0.005	0.0207	0.0002	0.00075	0.485	0.00231	< 0.001

			ر		1	<u> </u>	1							Radium-226 +	,	ر
		Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Cobalt,	Fluoride,	Lead,	Lithium,	Mercury,	Molybdenum,	Radium 228,	Selenium,	Thallium,
Sample	Date	total	total	total	total	total	total	total	total	total	total	total	total	total	total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-22	6/13/2016	< 0.002	0.00204	0.0491	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	0.849	< 0.005	< 0.001
MW-22	9/29/2016	< 0.002	0.00348	0.0563	< 0.001	< 0.001	< 0.002	< 0.0005	<1	0.00349	< 0.05	0.0002	< 0.005	0.92	< 0.005	< 0.001
MW-22	12/20/2016	< 0.002	0.00325	0.0549	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-22	4/19/2017	< 0.002	0.00305	0.0489	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	<0.005	<5	< 0.005	< 0.001
MW-22	6/7/2017	< 0.002	0.00266	0.0478	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-22	7/25/2017	< 0.002	0.00283	0.0567	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-22	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-22	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	0.0002	<0.01	<5	<0.01	< 0.002
MW-22	9/18/2018	NA	0.00379	0.0544	NA	NA	< 0.002	NA	<1	NA	0.0243	NA	NA	<5	NA	NA
MW-22	3/13/2019	< 0.002	0.00182	0.0484	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0239	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-22	9/11/2019	NA	0.00294	0.0526	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0246	NA	< 0.005	<5	< 0.005	NA
MW-22	4/8/2020	< 0.004	0.00262	0.0491	< 0.002	< 0.001	< 0.002	< 0.002	0.289	< 0.005	0.0202	< 0.0002	< 0.005	0.292	< 0.002	< 0.002
MW-24	1/27/2016	<0.02	< 0.005	<0.2	<0.02	< 0.01	< 0.003	0.0005	0.418	< 0.005	0.0166	0.0002	<0.01	<0.326	<0.01	< 0.001
MW-24	3/15/2016	< 0.002	0.00261	0.0444	<0.002	< 0.001	< 0.003	< 0.005	0.348	< 0.005	0.0155	0.0002	<0.01	<0.341	<0.01	< 0.001
MW-24	6/14/2016	<0.002	<0.001	0.0359	<0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	<0.05	0.0002	< 0.005	0.348	< 0.005	<0.001
MW-24	9/29/2016	<0.002	< 0.001	0.0407	<0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	<0.05	0.0002	<0.005	0.905	< 0.005	< 0.001
MW-24	12/20/2016	<0.002	<0.001	0.0392	<0.001	<0.001	<0.002	<0.0005	<1	< 0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-24	4/18/2017	<0.002	<0.001	0.0344	<0.001	<0.001	<0.002	<0.0005	<1	< 0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-24	6/7/2017	<0.002	< 0.001	0.0411	<0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	<0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-24	7/12/2017	< 0.002	< 0.001	0.0374	<0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	<0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-24	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-24	5/7/2018	< 0.003	<0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	<0.04	0.0002	<0.01	<5	<0.01	< 0.002
MW-24	9/27/2018	NA	<0.001	0.0467	NA	NA	<0.002	NA	<1	NA	0.0177	NA	NA	<5	NA	NA
MW-24	3/12/2019	< 0.002	< 0.001	0.0394	<0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	0.0186	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-24	9/11/2019	NA	< 0.001	0.0452	< 0.001	< 0.001	<0.002	< 0.0005	<1	< 0.001	0.0194	NA	< 0.005	<5	< 0.005	NA
MW-24	4/8/2020	< 0.004	< 0.002000	0.0449	<0.002	<0.001	<0.002	<0.002	0.35	<0.005	0.0151	<0.0002	<0.005	0.788	<0.002	<0.002
MW-D	1/28/2016	<0.1	< 0.005	<0.2	<0.02	<0.01	< 0.003	0.0005	2.11	<0.005	0.12	0.0002	<0.01	<0.621	<0.01	< 0.001
MW-D	3/15/2016	<0.002	0.00224	0.0247	< 0.002	< 0.001	0.000694	< 0.005	1.86	< 0.005	0.12	0.0002	0.000631	0.296	<0.01	< 0.001
MW-D	6/14/2016	< 0.002	< 0.001	0.0225	< 0.001	< 0.001	< 0.002	< 0.0005	1.82	< 0.001	0.116	0.0002	<0.005	0.0247	< 0.005	< 0.001
MW-D	9/30/2016	< 0.002	< 0.001	0.0235	< 0.001	< 0.001	< 0.002	< 0.0005	1.99	< 0.001	0.118	0.0002	<0.005	0.682	< 0.005	< 0.001
MW-D	12/21/2016	<0.002	< 0.001	0.0273	< 0.001	< 0.001	0.00292	0.000997	1.91	<0.001	0.125	0.0002	<0.005	<5	< 0.005	< 0.001
MW-D	4/18/2017	<0.002	<0.001	0.0257	< 0.001	< 0.001	< 0.002	<0.0005	2.11	<0.001	0.119	0.0002	<0.005	<5	< 0.005	< 0.001
MW-D	6/7/2017	<0.002	< 0.001	0.0273	< 0.001	< 0.001	< 0.002	<0.0005	2.19	< 0.001	0.113	0.0002	<0.005	<5	< 0.005	< 0.001
MW-D	7/12/2017	<0.002	<0.001	0.0239	<0.001	<0.001	<0.002	<0.0005	2.1	<0.001	0.123	0.0002	<0.005	<5	<0.005	<0.001
MW-D	11/14/2017	NA	NA	NA	NA	NA	NA	NA	2.63	NA	NA	NA	NA	NA	NA	NA
MW-D	5/8/2018	<0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	2.01	<0.005	0.125	0.0002	<0.01	<5	<0.01	<0.002
MW-D	9/18/2018	NA	<0.001	0.0282	NA	NA	<0.002	NA	1.9	NA	0.125	NA	NA	<5	NA	NA
MW-D	3/13/2019	<0.002	<0.001	0.0281	<0.001	<0.001	<0.002	<0.0005	2.2	<0.001	0.125	0.0002	<0.005	<5	<0.005	<0.001
MW-D	9/11/2019	NA	<0.001	0.027	<0.001	<0.001	0.00646	<0.0005	1.95	<0.001	0.119	NA	<0.005	<5	<0.005	NA
MW-D	4/8/2020	<0.004	<0.002000	0.0299	<0.002	<0.001	<0.002	<0.002	2.04	<0.005	0.107	<0.0002	<0.005	0.611	<0.002	<0.002
MW-E	1/27/2016	<0.1	0.00507	0.462	<0.02	<0.01	0.0229	0.0141	1.25	0.00625	0.163	0.0002	<0.01	2.49	<0.01	<0.05
MW-E	3/17/2016	<0.01	<0.025	0.441	<0.01	<0.005	0.00386	0.00331	0.28	0.00147	0.132	0.0002	0.00367	1.79	<0.05	<0.005
MW-E	6/14/2016	<0.002	0.00224	0.251	<0.001	<0.001	0.00728	0.00447	<1	0.00255	0.0651	0.0002	0.0117	0.637	<0.005	<0.001
MW-E	9/30/2016	<0.002	0.00162	0.353	<0.001	<0.001	0.00314	0.00451	1.03	0.00263	0.0623	0.0002	0.00515	1.39	<0.005	<0.001
MW-E	12/21/2016	<0.002	0.00412	0.421	<0.001	<0.001	0.0144	0.00958	<1	0.00457	0.101	0.0002	0.0101	<5	<0.005	<0.001
MW-E	4/18/2017	<0.002	<0.001	0.214	<0.001	<0.001	<0.002	0.00123	<1	<0.001	<0.05	0.0002	0.0103	<5	<0.005	<0.001
MW-E	6/7/2017	<0.002	<0.001	0.271	<0.001	<0.001	0.00293	0.00272	<1	0.00115	<0.05	0.0002	0.00652	<5	<0.005	<0.001
MW-E	7/25/2017	<0.002	<0.001	0.193	<0.001	<0.001	<0.002	0.000653	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-E	5/8/2018	< 0.003	<0.005	<0.2	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	0.0002	<0.01	<5	<0.01	<0.002
MW-E	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-E	9/18/2018	NA	< 0.001	0.166	NA	NA	< 0.002	NA	<1	NA	0.0324	NA	NA	<5	NA	NA
10100 E		< 0.002			< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0344	0.0002	< 0.005	<5	< 0.005	

														Radium-226 +		
		Antimony,	Arsenic,	Barium,	Beryllium,	Cadmium,	Chromium,	Cobalt,	Fluoride,	Lead,	Lithium,	Mercury,	Molybdenum,	Radium 228,	Selenium,	Thallium,
Sample	Date	total	total	total	total	total	total	total	total	total	total	total	total	total	total	total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-E	9/11/2019	NA	0.00106	0.246	< 0.001	< 0.001	0.00351	0.00232	<1	0.00131	0.0416	NA	<0.005	<5	< 0.005	NA
MW-E	4/8/2020	< 0.004	< 0.002000	0.175	< 0.002	< 0.001	< 0.002	<0.002	0.782	<0.005	0.0292	< 0.0002	<0.005	0.861	< 0.002	< 0.002
MW-F	1/28/2016	<0.1	0.0106	0.264	<0.02	< 0.01	0.0337	0.0222	1.02	0.0233	0.26	0.0002	< 0.01	<1.37	< 0.01	< 0.05
MW-F	3/18/2016	<0.01	<0.025	0.146	<0.01	< 0.005	0.00665	0.00423	0.674	0.00393	0.328	0.0002	<0.05	1.06	< 0.05	< 0.005
MW-F	6/14/2016	<0.002	0.00602	0.0938	< 0.001	<0.001	0.0187	0.00944	<1	0.0103	0.249	0.0002	<0.005	2.72	< 0.005	< 0.001
MW-F	9/30/2016	<0.002	0.00118	0.071	< 0.001	< 0.001	0.00307	0.00243	1.05	0.00253	0.261	0.0002	< 0.005	6.36	< 0.005	< 0.001
MW-F	12/21/2016	<0.002	0.00801	0.0901	0.00113	< 0.001	0.0301	0.0142	<1	0.0124	0.289	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-F	4/18/2017	<0.002	<0.001	0.039	< 0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.232	0.0002	<0.005	<5	< 0.005	< 0.001
MW-F	6/7/2017	<0.002	<0.001	0.0426	< 0.001	<0.001	< 0.002	<0.0005	<1	<0.001	0.224	0.0002	<0.005	<5	<0.005	< 0.001
MW-F	7/25/2017	<0.002	<0.001	0.0404	<0.001	<0.001	<0.002	0.000653	<1	<0.001	0.235	0.0002	<0.005	<5	<0.005	<0.001
MW-F	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-F	5/8/2018	<0.003	<0.005	<0.2	< 0.004	< 0.005	< 0.005	<0.005	<1	<0.005	0.265	0.0002	<0.01	<5	<0.01	<0.002
MW-F	9/18/2018	NA	<0.001	0.039	NA	NA	<0.002	NA	<1	NA	0.249	NA	NA	<5	NA	NA
MW-F	3/13/2019	<0.002	<0.001	0.0326	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.231	0.0002	<0.005	<5	<0.005	<0.001
MW-F	9/11/2019	NA	0.00103	0.0423	<0.001	<0.001	<0.002	<0.0005	<2.5	<0.001	0.232	NA	<0.005	<5	<0.005	NA
MW-F	4/8/2020	<0.004	<0.002000	0.0284	<0.002	<0.001	<0.002	<0.002	0.607	<0.005	0.0613	<0.0002	<0.005	2.24	<0.002	< 0.002
MW-G	1/27/2016	<0.02	0.00747	0.496	<0.02	<0.01	< 0.003	0.0005	0.597	<0.005	0.0341	0.0002	<0.01	1.31	<0.01	< 0.001
MW-G	3/15/2016	<0.002	0.00788	0.466	< 0.002	< 0.001	< 0.003	<0.005	0.359	<0.005	0.0362	0.0002	0.00252	1.07	<0.01	0.000537
MW-G	6/14/2016	<0.002	0.00352	0.406	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	1.42	<0.005	< 0.001
MW-G	9/30/2016	<0.002	0.00295	0.425	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	1.05	<0.005	< 0.001
MW-G	12/14/2016	<0.002	0.00315	0.438	< 0.001	< 0.001	< 0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-G	4/18/2017	<0.002	0.00293	0.387	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-G	6/7/2017	<0.002	0.00257	0.432	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	<0.001
MW-G	7/13/2017	<0.002	0.00276	0.392	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-G	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-G	5/7/2018	<0.003	<0.005	0.417	<0.004	<0.005	<0.005	<0.005	<1	<0.005	<0.04	0.0002	<0.01	<5	<0.01	<0.002
MW-G	9/17/2018	NA	0.00202	0.441	NA	NA	<0.002	NA	<1	NA	0.0425	NA	NA	<5	NA	NA
MW-G	3/12/2019	<0.002	0.00171	0.53	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0391	0.0002	<0.005	<5	<0.005	<0.001
MW-G	9/11/2019	NA	0.00196	0.452	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	0.0416	NA	<0.005	<5	<0.005	NA
MW-G	4/8/2020	<0.004	<0.002000	0.445	<0.002	<0.001	<0.002	<0.002	0.502	<0.005	0.0324	<0.0002	<0.005	1.89	<0.002	<0.002
MW-H	1/27/2016	<0.02	<0.005	0.0005	<0.02	<0.01	<0.003	<0.05	0.679	<0.005	0.03	0.0002	<0.01	0.454	<0.01	<0.001
MW-H	3/15/2016	<0.002	0.00548	0.127	<0.002	<0.001	0.000966	<0.005	0.384	<0.005	0.0303	0.0002	<0.01	0.622	<0.01	< 0.001
MW-H	6/14/2016	<0.002	0.00129	0.126	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	0.599	<0.005	<0.001
MW-H	9/30/2016	<0.002	0.00132	0.103	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.05	0.0002	<0.005	0.601	<0.005	<0.001
MW-H	12/20/2016	< 0.002	0.00131	0.0974	<0.001	< 0.001	<0.002	< 0.0005	<1	<0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-H	4/18/2017	< 0.002	0.00126	0.0837	<0.001	<0.001	<0.002	< 0.0005	<1	<0.001	< 0.05	0.0002	< 0.005	<5	<0.005	< 0.001
MW-H	6/7/2017	< 0.002	< 0.001	0.11	<0.001	< 0.001	<0.002	< 0.0005	<1	<0.001	< 0.05	0.0002	< 0.005	<5	< 0.005	< 0.001
MW-H	7/25/2017	< 0.002	0.00101	0.121	<0.001	< 0.001	<0.002	<0.0005	<1	<0.001	< 0.05	0.0002	<0.005	<5	<0.005	< 0.001
MW-H	11/15/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-H	5/7/2018	< 0.003	< 0.005	< 0.2	<0.004	< 0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	0.0002	<0.01	<5	<0.01	< 0.002
MW-H	9/18/2018	NA	< 0.001	0.135	NA	NA	< 0.002	NA 10.0005	<1	NA	0.0376	NA	NA	<5	NA 10.005	NA 10.001
MW-H	3/12/2019	<0.002	0.00107	0.111	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	0.0376	0.0002	< 0.005	<5	< 0.005	<0.001
MW-H	9/12/2019	NA 10.004	0.00105	0.124	<0.001	<0.001	0.00216	< 0.0005	<1	< 0.001	0.04	NA 10.0002	< 0.005	<5	< 0.005	NA 10.002
MW-H	4/8/2020	< 0.004	<0.002000	0.119	< 0.002	< 0.001	< 0.002	< 0.002	0.443	< 0.005	0.0337	< 0.0002	< 0.005	0.673	< 0.002	< 0.002
Sequence 1 leac	2/26/2019	0.00527	0.356	0.0684	<0.001	<0.001	< 0.002	< 0.0005	1.77	< 0.001	2.61	0.000935	0.143	NA	0.00838	< 0.001
Sequence 1 leac	4/9/2020	0.00817	0.269	0.0706	<0.002	<0.001	0.261	0.258	0.845	<0.005	2.33	0.00151	0.143	0.493	0.0135	<0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter

April 8, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant levels (SSLs) over groundwater protection standards of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., part of Ramboll, to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Zimmer Landfill located near the Zimmer Power Station and Moscow, OH.

The first Assessment Monitoring sampling event was completed on May 7, 2018, and May 8, 2018. As stipulated in 40 C.F.R. § 257.95(d)(1), all wells were resampled on September 17, 2018, and September 18, 2018, for all Appendix III parameters and Appendix IV parameters detected during the first Assessment Monitoring sampling event. Due to shipping delays, samples from monitoring wells MW-18, MW-21, and MW-24 arrived at the analytical laboratory above the temperature allowable by the analysis method. These three wells were resampled on September 27, 2018 and submitted for analysis. Analytical data from all sampling events from December 2015 through the resampling event on September 27, 2018, were evaluated in accordance with the statistical analysis plan¹ to determine any statistically significant levels (SSLs) of Appendix IV parameters over the Groundwater Protection Standards (GWPSs) established in accordance with 40 C.F.R. § 257.95(h). That evaluation identified SSLs at downgradient monitoring wells as follows:

Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the SSL listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSLs (January 9, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ISOTOPIC EVALUATION

Isotopes are commonly used in age dating, provenance studies, and to differentiate between sources of groundwater. Multiple studies have shown that boron and strontium isotope ratios can be successfully used in identifying CCR impacts to groundwater²⁻³. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as boron and strontium isotopes, make good groundwater tracers. This ASD compares boron and strontium isotope ratios to published ranges for CCR impacted groundwater and CCR leachate.

Boron

Boron isotopes do not fractionate during combustion, meaning the isotopic ratio in the coal and in the subsequent CCR are similar, regardless of the total boron in the coal and the combusted coal². The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR².

Because variations in boron isotope ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\delta^{11}B = \left[\frac{(^{11}B/^{10}B)_{sample}, (^{11}B/^{10}B)_{std}}{(^{11}B/^{10}B)_{std}}\right] \times 1000$$

Strontium

One of the four stable isotopes (⁸⁷Sr) is subject to long-term radiogenic ingrowth by radioactive decay of rubidium (⁸⁷Rb). The isotopic ratio, ⁸⁷Sr/⁸⁶Sr, is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation⁶.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

Lines of evidence supporting this ASD include the following:

- 1. Boron isotope ratios in downgradient groundwater are not consistent with boron isotope ratios in CCR and CCR-impacted waters.
- 2. Strontium isotope ratios in groundwater are lower than the typical range for CCRs.

These lines of evidence are described and supported in greater detail below.

LOE #1: BORON ISOTOPE RATIOS DOWNGRADIENT ARE WITHIN THE TYPICAL RANGE FOR GROUNDWATER.

Strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) for groundwater and leachate are plotted against boron isotope ratios ($\delta^{11}B$) in Figure 2. The $\delta^{11}B$ range for typical groundwater, shaded green, is 10% to 40% ⁷. The area shaded orange represents $\delta^{11}B$ range for CCR-impacted water, which has a distinctive negative $\delta^{11}B$ signature ranging from -70 % to -1%^{2,8}.

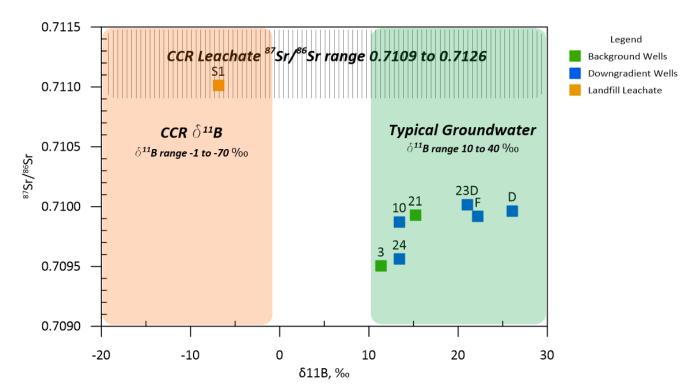


Figure 2. Strontium isotope ratio vs boron isotope ratio²

All groundwater results are within the typical δ^{11} B range for groundwater². The leachate results, S1, are within the typical negative δ^{11} B range for CCR leachates². Figure 2 shows that δ^{11} B groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

LOE #2: STRONTIUM ISOTOPE RATIOS DOWNGRADIENT ARE LOWER THAN THE TYPICAL RANGE FOR CCR IMPACTED WATERS.

Strontium isotope ratios in coal, fly ash, and bottom ash range from 0.7109 to 0.7126, indicated by the vertical hatching in Figure 2.

The groundwater results are within the typical groundwater range². The leachate sample is within the typical ⁸⁷Sr/⁸⁶Sr range for CCR leachates². Figure 2 shows that ⁸⁷Sr/⁸⁶Sr groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

Based on these two lines of evidence, it has been demonstrated that the Zimmer Landfill has not caused the Lithium SSL in MW-F.

This information serves as the written ASD, prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii), that the lithium SSL observed during the assessment monitoring program was not due to Zimmer Landfill, but naturally-occurring conditions. Therefore, a corrective measures assessment is not required, and the Zimmer Landfill will remain in assessment monitoring.

REFERENCES

1. Natural Resource Technology, Statistical Analysis Plan. 2017.

 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* 2014, 9.
 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procdia Earth and Planetary Science* 2015, 4.

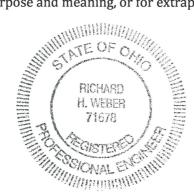
4. Hensel, B. R. Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate; 2012.

5. Vengosh, A.; Heumann, K. G.; Juraske, S.; Kasher, R., Boron Isotope Application for Tracing Sources of Contamination in Grounwater. *Environmental Science & Technology* **1994**, *26* (11), 7.

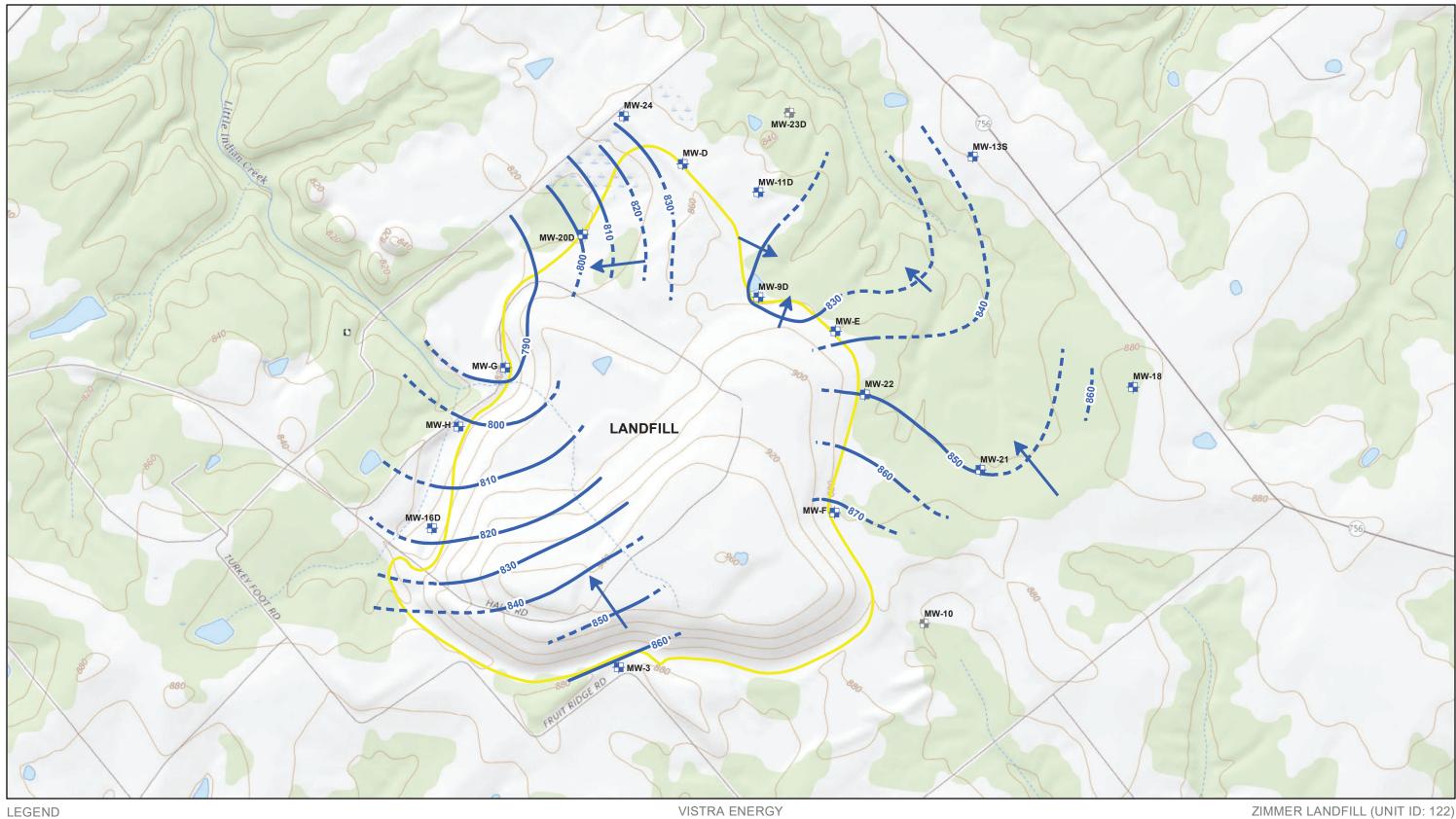
6. Bataille, C. P.; Bowen, G. J., Mapping 87Sr/86Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.

7. Kloppman, W.; Petelet-Giraud, E.; Guerrot, C.; Cary, L.; Pauwels, H., Extreme Boron Isotope Ratios in Groundwater. *Procedia Earth and Planetary Science* **2015**, 5.

8. Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, *19* (10), 1625-1636.


40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

I, Nicole M. Pagano, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.


Nicole M. Pagano Senior Managing Engineer OBG, part of Ramboll Date: April 8, 2019

I, Richard H. Weber, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Richard H. Weber Qualified Professional Engineer 71678 Ohio OBG, part of Ramboll Date: April 8, 2019

CCR MONITORED UNIT

VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

700

175 350

1,050

1,400

FIGURE NO. 1

ZIMMER LANDFILL (UNIT ID: 122) MONITORING WELL MAP WITH GROUNDWATER DIVIDE GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 14, 2017

O'BRIEN & GERE ENGINEERS, INC.

October 28, 2019

Title 40 of the Code of Federal Regulations (C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a coal combustion residuals (CCR) unit 90 days from the date of determination of statistically significant levels (SSLs) over groundwater protection standards of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (alternate source demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., part of Ramboll, to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for the Zimmer Landfill located near the Zimmer Power Station and Moscow, OH.

The second Assessment Monitoring sampling event (A2) was completed on March 13, 2019 and analytical data were received on April 29, 2019. Analytical data from all sampling events, from December 2015 through A2, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over Groundwater Protection Standards (GWPSs). That evaluation identified SSLs at downgradient monitoring wells as follows:

Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the SSL listed above. This alternate source demonstration (ASD) was completed within 90 days of determination of the SSLs (July 29, 2019), as required by 40 C.F.R. § 257.95(g)(3)(ii).

ISOTOPIC EVALUATION

Isotopes are commonly used in age dating, provenance studies, and to differentiate between sources of groundwater. Multiple studies have shown that boron and strontium isotope ratios can be successfully used in identifying CCR impacts to groundwater²⁻³. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as boron and strontium isotopes, make good groundwater tracers. This ASD compares boron and strontium isotope ratios to published ranges for CCR impacted groundwater and CCR leachate.

Boron

Boron isotopes do not fractionate during coal combustion, meaning the isotopic ratio in the coal is preserved, regardless of the total boron in the coal and the combusted coal². The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR².

Because variations in boron isotope ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\delta^{11}B = \left[\frac{(^{11}B/^{10}B)_{sample}, (^{11}B/^{10}B)_{std}}{(^{11}B/^{10}B)_{std}}\right] \times 1000$$

Strontium

One of the four stable isotopes (⁸⁷Sr) is subject to long-term radiogenic ingrowth by radioactive decay of rubidium (⁸⁷Rb). The isotopic ratio, ⁸⁷Sr/⁸⁶Sr, is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation⁴.

ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

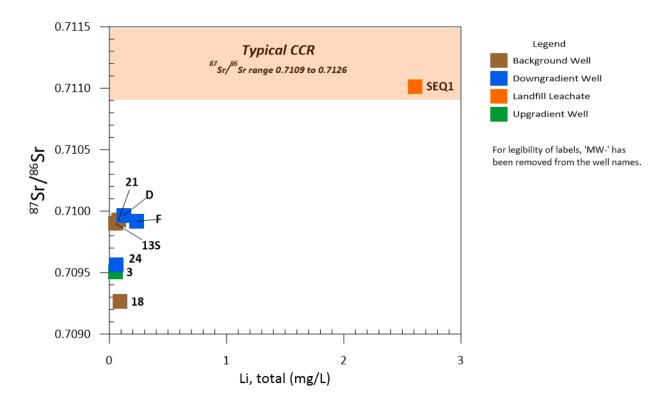
Lines of evidence (LOE) supporting this ASD include the following:

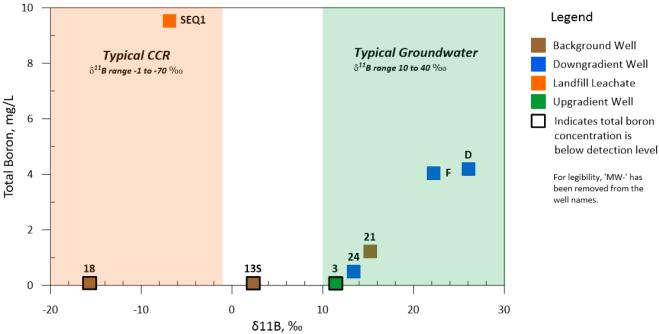
- 1. Strontium isotope ratios in groundwater are lower than the typical range for CCR impacted waters.
- 2. Boron isotope ratios in downgradient groundwater are not consistent with boron isotope ratios in CCR and CCR impacted waters.

These lines of evidence are described and supported in greater detail below.

LOE #1: STRONTIUM ISOTOPE RATIOS DOWNGRADIENT ARE LOWER THAN THE TYPICAL RANGE FOR CCR IMPACTED WATERS.

Strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) for groundwater and leachate are plotted against total lithium in Figure 1. Strontium isotope ratios in coal, fly ash, and bottom ash impacted waters range from 0.7109 to 0.7126², indicated by the area shaded orange in Figure 1.




Figure 1. Strontium isotope ratio vs total lithium²



The groundwater results are within the typical groundwater range². The leachate sample is within the typical ⁸⁷Sr/⁸⁶Sr range for CCR impacted waters². Figure 2 shows that ⁸⁷Sr/⁸⁶Sr groundwater results are well grouped, and that the leachate is not mixing with the groundwater.

LOE #2: BORON ISOTOPE RATIOS DOWNGRADIENT ARE WITHIN THE TYPICAL RANGE FOR GROUNDWATER.

Total boron (B) for groundwater and leachate are plotted against boron isotope ratios ($\delta^{11}B$) in Figure 2. The $\delta^{11}B$ range for typical groundwater, shaded green, is 10% to 40% ⁵. The area shaded orange represents $\delta^{11}B$ range for CCR impacted water, which has a distinctive negative $\delta^{11}B$ signature ranging from -70 % to -1%^{2, 6}.

All groundwater results are within the typical δ^{11} B range for groundwater² at wells with total boron concentration above the detection limit. The leachate results, SEQ1, are within the typical negative δ^{11} B range for CCR leachates². Figure 2 shows that δ^{11} B groundwater results are well grouped, except for background wells MW-13S and MW-18, which did not have detectable concentrations of total boron, and that the leachate is not mixing with the groundwater. The landfill is not influencing MW-13S and MW-18 as evidenced by groundwater flow shown on Figure 3.

Based on these two lines of evidence, it has been demonstrated that the Zimmer Landfill has not caused the Lithium SSL in MW-F.

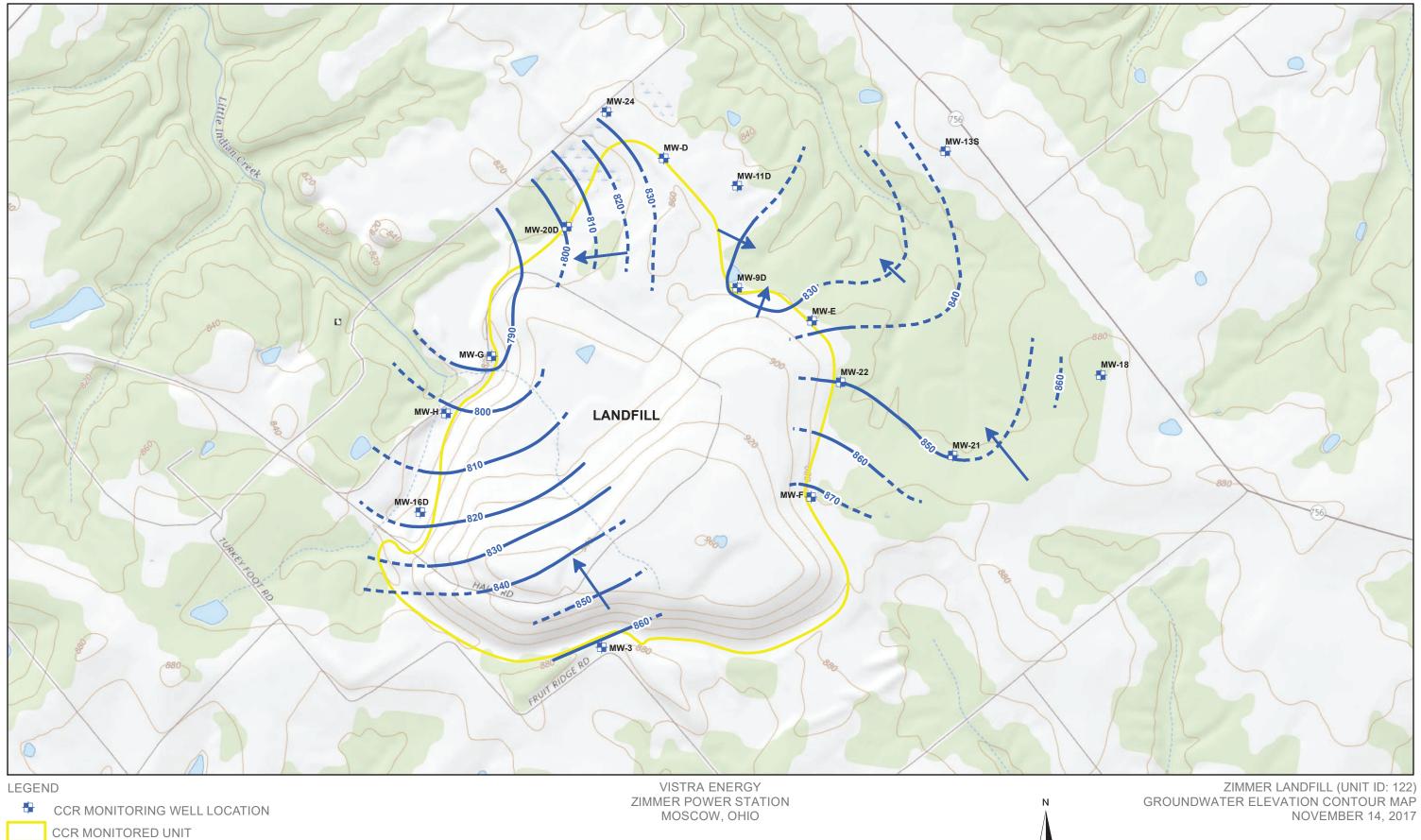
This information serves as the written ASD, prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii), that the lithium SSL observed during the assessment monitoring program was not due to Zimmer Landfill. Therefore, a corrective measures assessment is not required, and the Zimmer Landfill will remain in assessment monitoring.

REFERENCES

1. Natural Resource Technology, Statistical Analysis Plan. 2017.

 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* 2014, 9.
 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procdia Earth and Planetary Science* 2015, 4.

4. Bataille, C. P.; Bowen, G. J., Mapping 87Sr/86Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.


5. Kloppman, W.; Petelet-Giraud, E.; Guerrot, C.; Cary, L.; Pauwels, H., Extreme Boron Isotope Ratios in Groundwater. *Procedia Earth and Planetary Science* **2015**, 5.

6. Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, *19* (10), 1625-1636.

ATTACHMENTS

Figure 3 Groundwater Elevation Contour Map

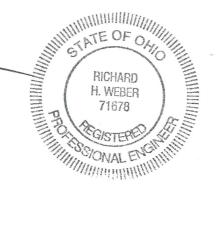
1,050 1,400 175 350 700

FIGURE NO. 3

NOVEMBER 14, 2017

O'BRIEN & GERE ENGINEERS, INC.

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL


I, Nicole M. Pagano, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Senior Managing Engineer OBG, part of Ramboll Date: October 28, 2019

I, Richard H. Weber, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

3 Richard H. Weber

Qualified Professional Engineer 71678 Ohio OBG, part of Ramboll Date: October 28, 2019

Intended for Dynegy Zimmer, LLC

Date May 4, 2020

Project No. **74924**

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

40 C.F.R. § 257.95(g)(3)(ii): Alternate Source Demonstration Zimmer Landfill

CERTIFICATIONS

I, Jacob J. Walczak, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Senior Hydrogeologist O'Brien & Gere Engineers, Inc., a Ramboll Company Date: May 4, 2020

I, Nicole M. Pagano, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole⁴M. **P**agano Qualified Professional Engineer 85428 Ohio O'Brien & Gere Engineers, Inc., a Ramboll Company Date: May 4, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

1.	Introduction	3
2.	Background	4
2.1	Site Location and Description	4
2.2	Description of Landfill CCR Unit	4
2.3	Groundwater Flow	4
2.4	Isotopic Evaluation	4
2.4.1	Strontium	5
2.4.2	Boron	5
3.	Alternate Source Demonstration: Lines of Evidence	6
3.1	LOE #1: Strontium Isotopic Ratios in Groundwater Near the	
	Zimmer Landfill are Lower Than the Published Typical Range of	
	Strontium Isotopic Ratios for CCR Impacted Waters.	6
3.2	LOE #2: Boron Isotopic Ratios in Groundwater Near the Zimmer	
	Landfill are Within the Published Typical Range of Boron Isotopic	
	Ratios for Groundwater and are Not Consistent With the Published	
	Typical Boron Isotopic Ratios in CCR and CCR Impacted Waters.	7
4.	Conclusions	9
5.	References	10

FIGURES (IN TEXT)

Figure A	Strontium Isotopic Ratios for Monitoring Well and Sampling Locations
Figure B	Boron Isotopic Ratios for Monitoring Well and Sampling Locations

FIGURES

Figure 1	Monitoring Well and Sampling Location Map
Figure 2	Groundwater Elevation Contour Map, September 10, 2019

ACRONYMS AND ABBREVIATIONS

‰ ¹⁰B	parts per thousand or <i>per mil</i> variations boron-10
¹¹ B	boron-11
D	
⁸⁶ Sr	strontium-86
⁸⁷ Sr	strontium-87
⁸⁷ Sr/ ⁸⁶ Sr	isotopic ratio of strontium-87 to strontium-86
40 C.F.R.	Title 40 of the Code of Federal Regulation
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
C.F.R.	Code of Federal Regulations
ft	feet
GWPS	Groundwater Protection Standard
LOE	line of evidence
mg/L	milligrams per liter
msl	above Mean Sea Level
NRT/OBG	Natural Resource Technology, an OBG Company
PTI	permit-to-install
Site	Zimmer Power Station Landfill
SSI	Statistically Significant Increase
SSL	Statistically Significant Level
std	standard

1. INTRODUCTION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by O'Brien & Gere Engineers, Inc., a Ramboll Company (Ramboll), to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for Zimmer Landfill located near Moscow, Ohio.

The most recent Assessment Monitoring sampling event (A2D) was completed on September 11 and September 12, 2019 and analytical data were received on November 4, 2019. Analytical data from all sampling events, from December 2015 through A2D, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL at downgradient monitoring wells as follows:

• Lithium at well MW-F

Pursuant to 40 C.F.R. § 257.95(g)(3)(ii), the following lines of evidence demonstrate that sources other than the Zimmer Landfill were the cause of the lithium SSL listed above. This ASD was completed by May 4, 2020, within 90 days of determination of the SSLs (February 3, 2020), as required by 40 C.F.R. § 257.95(g)(3)(ii).

2. BACKGROUND

2.1 Site Location and Description

The W. H. Zimmer Power Station is located in southwest Ohio, approximately 30 miles southeast of Cincinnati, Ohio. The Zimmer Power Station Landfill (Site) is located approximately 3 miles east of the power station and is bounded by State Route 756 on the northeast, Turkeyfoot Road on the northwest, and Fruit Ridge Road on the southwest (Figure 1).

2.2 Description of Landfill CCR Unit

The landfill footprint covers approximately 288 acres (Figure 1). CCR generated at the station is trucked to the landfill for disposal. Materials approved for disposal include fly ash, dewatered bottom ash, dewatered and stabilized flue gas desulfurization wastes, and gypsum. Disposal activities commenced in January 1991 and have progressed through a series of fill areas or phases.

2.3 Groundwater Flow

The Uppermost Aquifer is continuous beneath the Site and is comprised of the upper 20 feet (ft) or less of the fractured and weathered bedrock. Bedrock is typically encountered 15 to 25 ft below ground surface and overlain by clay, although it may be deeper in the two major surface drainage channels at the Site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The bedrock unit is the interbedded shale and limestone of the Fairview and Kope Formations.

In order to collect all groundwater elevations within the same day, as required by the Sampling and Analysis Plan², groundwater measurements during A2D were collected on September 10, 2019, the day prior to the first day of analytical sampling at the Site (September 11, 2019). Groundwater elevations across the Site ranged from approximately 787 to 873 ft above Mean Sea Level (msl) during A2D (Figure 2). Groundwater in the Uppermost Aquifer generally flows from bedrock highs towards the drainage channels, paralleling the direction of topographic slope, in a manner similar to the flow of surface runoff. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns, as groundwater movement may be controlled by preferential pathways created by open fractures and their degree of interconnection.

2.4 Isotopic Evaluation

Stable isotope analysis is commonly used in age dating, provenance studies and to differentiate between sources of groundwater. Multiple studies have shown that strontium and boron isotopic ratios can be successfully used in identifying CCR impacts to groundwater.^{3,4}. When a material is altered, the mass of a given element in the resulting material may be conserved or reduced. Alteration processes, such as combustion, may also affect the isotopic ratios of a given element, referred to as fractionation. Isotopes that have minimal fractionation during the alteration process, such as strontium and boron isotopes, make good groundwater tracers, therefore, strontium and boron isotopic ratios can be used to identify CCR impacted groundwater and CCR leachate³. This ASD compares strontium and boron isotopic ratios of groundwater in the vicinity of Zimmer Landfill and landfill leachate to typical published ranges for groundwater and CCR impacted waters.

2.4.1 Strontium

The ratio of stable strontium isotopes, strontium-87 to strontium-86.⁵(⁸⁷Sr/⁸⁶Sr), is commonly used to trace the mixing of global reservoirs and to evaluate the environmental conditions in surface waters, oceans, and sediments. Strontium isotopes are very useful for provenance identification because the isotopic signature of rock is transferred to the soil, vegetation, and up the food web with minimal isotopic fractionation.⁶.

Strontium isotopic ratios are typically expressed and reported as an absolute ratio (i.e., ⁸⁷Sr/⁸⁶Sr) due to strontium-86 (⁸⁶Sr) being a stable isotope with a constant abundance^{7,8}. This is the exception for stable isotope analysis, since most results are reported relative to a standard, as described in further detail for boron below in Section 2.3.

2.4.2 Boron

Boron isotopes do not fractionate during coal combustion, meaning the isotopic ratio in the coal is preserved, between the coal and the combusted coal³. The isotopic ratio is also conserved when mobilized to water; thus, CCR-impacted groundwater will have similar isotopic ratios as the original coal and the CCR³.

Because variations in boron isotopic ratios are usually small, they are reported in parts per thousand or *per mil* variations, denoted ‰, from a standard.

$$\boldsymbol{\delta}^{11}\mathsf{B} = \left[\frac{(^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{sample}} - (^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{std}}}{(^{11}\mathsf{B}/^{10}\mathsf{B})_{\text{std}}}\right] \times \mathbf{1000}$$

3. ALTERNATE SOURCE DEMONSTRATION: LINES OF EVIDENCE

This ASD is based on the following lines of evidence (LOEs):

- 1. Strontium isotopic ratios in groundwater near the Zimmer Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters.
- 2. Boron isotopic ratios in groundwater near the Zimmer Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters.

These LOEs are described and supported in greater detail below. Monitoring wells and landfill leachate sample locations are shown on Figure 1.

3.1 LOE #1: Strontium Isotopic Ratios in Groundwater Near the Zimmer Landfill are Lower Than the Published Typical Range of Strontium Isotopic Ratios for CCR Impacted Waters.

Strontium isotopic ratios (⁸⁷Sr/⁸⁶Sr) for samples collected from groundwater monitoring wells and landfill leachate (SEQ1) on September 17, 18 and 27, 2018 are plotted in Figure A below. Published ⁸⁷Sr/⁸⁶Sr in coal, fly ash, and bottom ash impacted waters range from 0.7109 to 0.7126³, as indicated by the area shaded orange in Figure A.

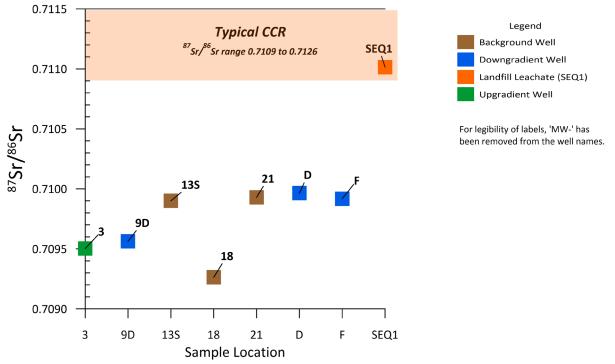


Figure A. Strontium Isotopic Ratios for Monitoring Well and Sampling Locations³.

The range of ⁸⁷Sr/⁸⁶Sr found in groundwater, 0.70926 to 0.70996, near Zimmer Landfill are below the published typical range of ⁸⁷Sr/⁸⁶Sr for CCR impacted waters indicating groundwater near Zimmer Landfill is not impacted by CCR³ The ⁸⁷Sr/⁸⁶Sr found in the landfill leachate sample (SEQ1), 0.71101, is within the published typical range of ⁸⁷Sr/⁸⁶Sr for CCR impacted waters (0.7109 to 0.7126) indicating leachate collected at location SEQ1 is impacted by CCR³. Figure A also shows that ⁸⁷Sr/⁸⁶Sr in groundwater near Zimmer Landfill are well grouped, and that the ⁸⁷Sr/⁸⁶Sr in landfill leachate (SEQ1) is distinctly different than groundwater near Zimmer Landfill. The ⁸⁷Sr/⁸⁶Sr in groundwater near Zimmer Landfill indicate that groundwater is not influenced by CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

3.2 LOE #2: Boron Isotopic Ratios in Groundwater Near the Zimmer Landfill are Within the Published Typical Range of Boron Isotopic Ratios for Groundwater and are Not Consistent With the Published Typical Boron Isotopic Ratios in CCR and CCR Impacted Waters.

Boron isotopic ratios (δ 11B) for samples collected from groundwater monitoring wells and landfill leachate (SEQ1) on September 17, 18 and 27, 2018 are plotted in Figure B below. The published typical range of δ^{11} B for groundwater, shaded green in Figure B, is 10‰ to 40‰³. The area shaded orange in Figure B represents the published typical range of δ^{11} B for CCR and CCR impacted water, which has a distinctive negative δ^{11} B signature ranging from -70 ‰ to -1‰^{3,9}.

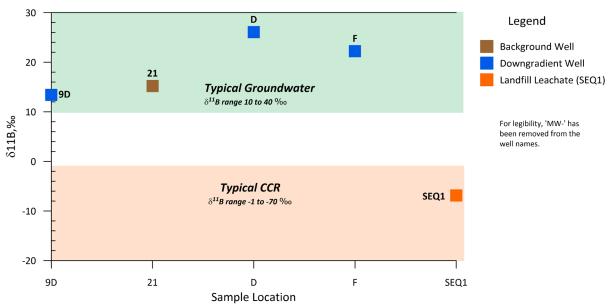


Figure B. Boron Isotopic Ratios for Monitoring Well and Sampling Locations³ (note: total boron concentrations at sample locations MW-3, MW-13S and MW-18 were below detection level and were not included).

The range of δ^{11} B found in groundwater, 13.43 to 26.07‰, near Zimmer Landfill are within the published typical range of δ^{11} B for groundwater (10‰ to 40‰), and are not consistent with the published typical range of δ^{11} B for CCR and CCR impacted water (-70 ‰ to -1‰) indicating groundwater near Zimmer Landfill is not impacted by CCR ³. The δ^{11} B found in the landfill

leachate sample (SEQ1), -6.86‰, is within the published typical range of δ^{11} B for CCR and CCR impacted waters (-70 ‰ to -1‰) indicating leachate collected at location SEQ1 is impacted by CCR³. Figure B also shows that δ^{11} B in groundwater near Zimmer Landfill are well grouped, and that the δ^{11} B in landfill leachate (SEQ1) is distinctly different than groundwater near Zimmer Landfill. The δ^{11} B in groundwater near Zimmer Landfill indicate that groundwater is not influenced by CCR or CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

4. CONCLUSIONS

Based on the following two lines of evidence, it has been demonstrated that the lithium SSL at MW-F is not due to Zimmer Landfill but is from a source other than the CCR unit being monitored:

- Strontium isotopic ratios in groundwater near the Zimmer Landfill are lower than the published typical range of strontium isotopic ratios for CCR impacted waters. This indicates that groundwater is not influenced by CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.
- 2. Boron isotopic ratios in groundwater near the Zimmer Landfill are within the published typical range of boron isotopic ratios for groundwater and are not consistent with the published typical boron isotopic ratios in CCR and CCR impacted waters. This indicates that groundwater is not influenced by CCR or CCR impacted waters, including landfill leachate (SEQ1), therefore lithium in groundwater near Zimmer Landfill is from a source other than the Zimmer Landfill CCR unit and the associated landfill leachate.

This information serves as the written ASD prepared in accordance with 40 C.F.R. § 257.95(g)(3)(ii) that the SSL observed during the A2D sampling event was not due to Zimmer Landfill. Therefore, a corrective measures assessment is not required, and Zimmer Landfill will remain in assessment monitoring.

5. **REFERENCES**

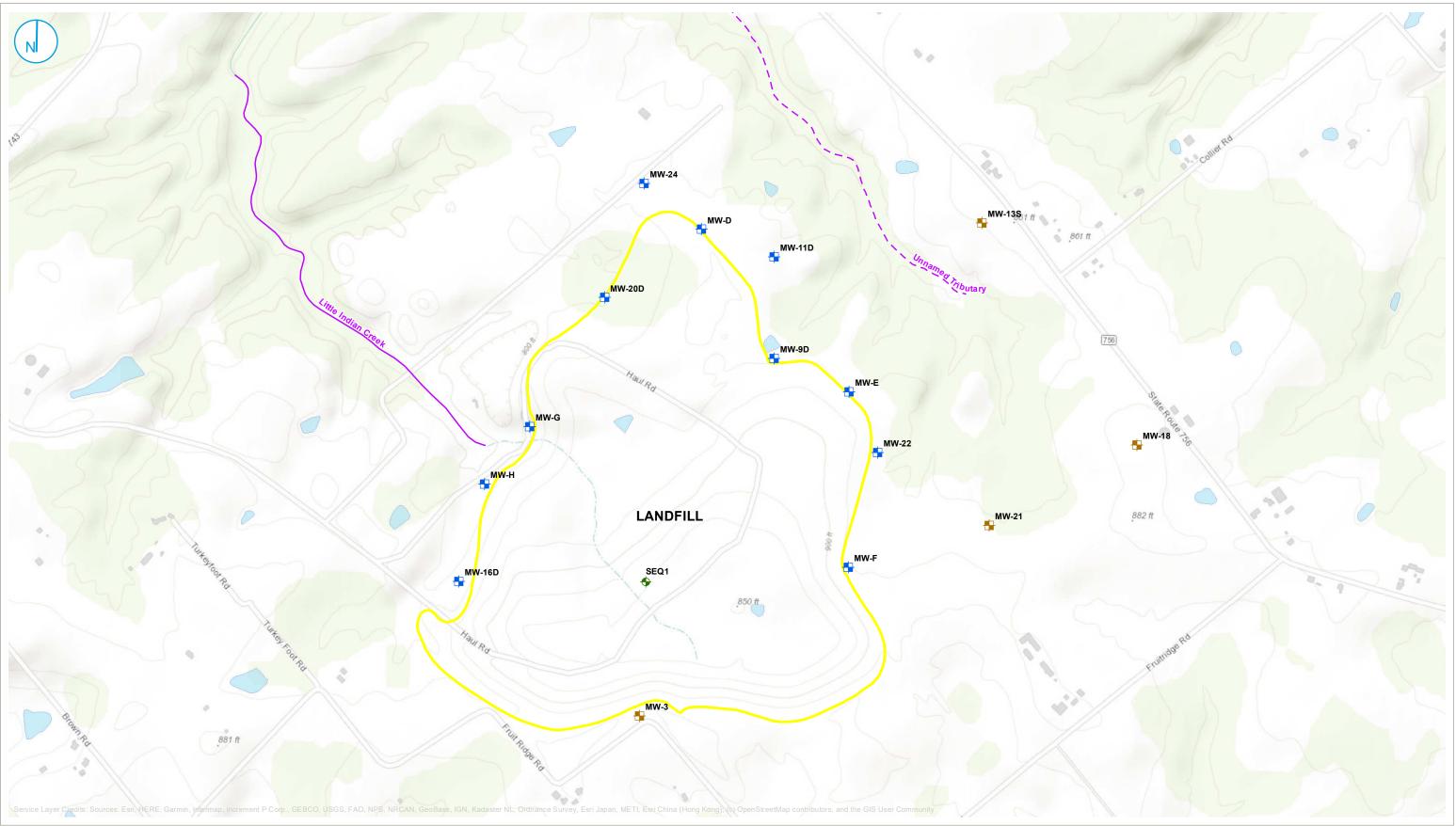
1 Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

2 AECOM, 2017, Sampling and Analysis Plan, Zimmer Power Station Landfill, Dynegy Zimmer, LLC, October 17, 2017.

3 Ruhl, L. S.; Dwyer, G. S.; Hsu-Kim, H.; Hower, J. C.; Vengosh, A., Boron and Strontium Isotopic Characterization of Coal Combustion Residuals; Validation of New Environmental Tracers. *Environmental Science & Technology* **2014**, 9.

4 Harkness, J. S.; Ruhl, L. S.; Millot, R.; Kloppman, W.; Hower, J. C.; Hsu-Kim, H.; Vengosh, A., Lithium Isotope Fingerprints in Coal and Coal Combusion Residuals from the United States. *Procedia Earth and Planetary Science* **2015**, 4.

5 Kendall, C.; Caldwell, E; and Snyder, D. (U.S. Geological Survey, Menlo Park, CA), *Isotope Tracers Project, Resources on Isotopes, Periodic Table--Strontium*, U.S. Geological Survey, August 2003, *https://wwwrcamnl.wr.usgs.gov/isoig/period/sr_iig.html*


6 Bataille, C. P.; Bowen, G. J., Mapping ⁸⁷Sr/⁸⁶Sr Variations in Bedrock and Water for Large Scale Provenance Studies. *Chemical Geology* **2012**, 14.

7 Cook, Peter & Herczeg, Andrew., Appendix 1: Stable Isotope Notation and Fractionation, *Environmental Tracers in Subsurface Hydrology* **2000**, 511-529.

8 Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA), Isotopes and Hydrology, Periodic Table Menu--Strontium, Arizona Board of Regents, 2005, http://web.sahra.arizona.edu/programs/isotopes/strontium.html

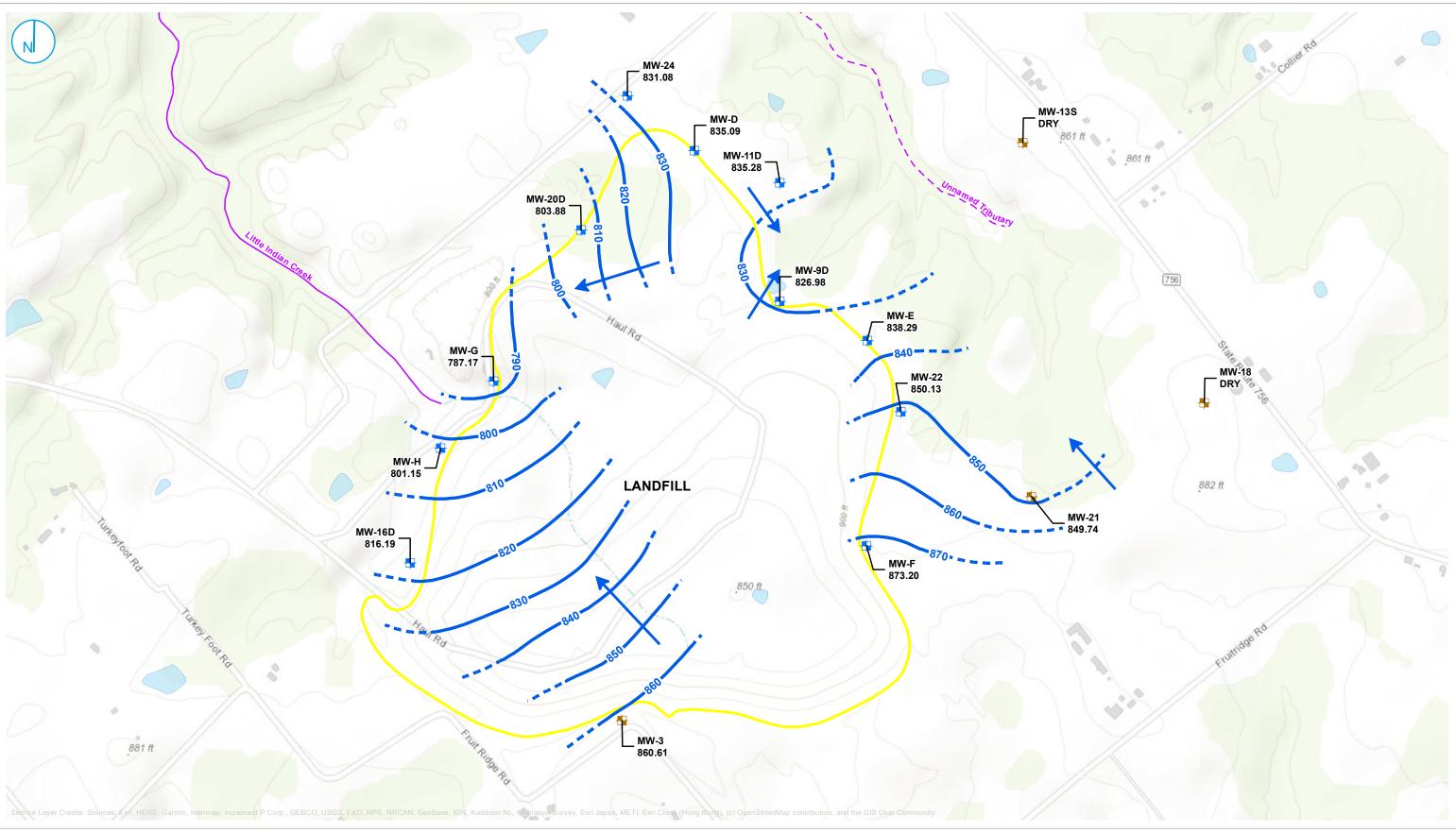
9 Williams, L. B.; Hervig, R. L., Boron isotope composition of coals: a potential tracer of organic contaminated fluids. *Applied Geochemistry* **2004**, 19 (10), 1625-1636.

FIGURES

ZIMMER LANDFILL CCR MONITORING WELL LOCATION \oplus ZIMMER LANDFILL BACKGROUND CCR MONITORING WELL LOCATION \frown PERENNIAL STREAM

- ZIMMER LANDFILL LEACHATE SAMPLE LOCATION
- CCR MONITORED UNIT

- NATIONAL HYDROGRAPHY DATASET
- INTERMITTENT STREAM
 - S WATERBODY


MONITORING WELL AND SAMPLING LOCATION MAP

ZIMMER LANDFILL (UNIT ID: 122) ALTERNATE SOURCE DEMONSTRATION VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

FIGURE 1

RAMBOLL US CORPORATION A RAMBOLL COMPANY

- ZIMMER LANDFILL CCR MONITORING WELL LOCATION
- 🖶 ZIMMER LANDFILL BACKGROUND CCR MONITORING WELL LOCATION 🔨 PERENNIAL STREAM
- GROUNDWATER ELEVATION CONTOUR (10-FT INTERVAL)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION

- Feet

- NATIONAL HYDROGRAPHY DATASET
- INTERMITTENT STREAM
- S WATERBODY

GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 10, 2019

FIGURE 2

RAMBOLL US CORPORATION A RAMBOLL COMPANY

ZIMMER LANDFILL (UNIT ID: 122) ALTERNATE SOURCE DEMONSTRATION VISTRA ENERGY ZIMMER POWER STATION MOSCOW, OHIO

Intended for Dynegy Zimmer, LLC

Date **October 26, 2020**

Project No. 1940074924

40 C.F.R. § 257.95(g)(3)(ii): ALTERNATE SOURCE DEMONSTRATION ZIMMER LANDFILL

40 C.F.R. § 257.95(g)(3)(ii): Alternate Source Demonstration Zimmer Landfill

CERTIFICATIONS

I, Jacob J. Walczak, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Jacob J. Walczak Senior Hydrogeologist Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

I, Nicole M. Pagano, a qualified professional engineer in good standing in the State of Ohio, certify that the information in this report is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nicole M. Pagano Qualified Professional Engineer 85428 Ohio Ramboll Americas Engineering Solutions, Inc., f/k/a O'Brien & Gere Engineers, Inc. Date: October 26, 2020

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T 414-837-3607 F 414-837-3608 https://ramboll.com

ACRONYMS AND ABBREVIATIONS

40 C.F.R.	Title 40 of the Code of Federal Regulations
ASD	Alternate Source Demonstration
CCR	Coal Combustion Residuals
f/k/a	formerly known as
GWPS	Groundwater Protection Standard
NRT/OBG	Natural Resource Technology, an OBG Company
SSI	Statistically Significant Increase
SSL	Statistically Significant Level

ALTERNATE SOURCE DEMONSTRATION

Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257.95(g)(3)(ii) allows the owner or operator of a Coal Combustion Residuals (CCR) unit 90 days from the date of determination of Statistically Significant Levels (SSLs) over Groundwater Protection Standards (GWPSs) of groundwater constituents listed in Appendix IV of 40 C.F.R. Part 257 to complete a written demonstration that a source other than the CCR unit being monitored caused the SSL(s), or that the SSL(s) resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (Alternate Source Demonstration [ASD]).

This ASD has been prepared on behalf of Dynegy Zimmer, LLC, by Ramboll Americas Engineering Solutions, Inc., formerly known as (f/k/a) O'Brien & Gere Engineers, Inc. to provide pertinent information pursuant to 40 C.F.R. § 257.95(g)(3)(ii) for Zimmer Landfill located near Moscow, Ohio.

The most recent Assessment Monitoring sampling event (A3) was completed on April 8, 2020, and analytical data were received on April 27, 2020. Analytical data from all sampling events, from December 2015 through A3, were evaluated in accordance with the Statistical Analysis Plan¹ to determine any Statistically Significant Increases (SSIs) of Appendix III parameters over background concentrations or SSLs of Appendix IV parameters over GWPSs. That evaluation identified one SSL, as determined on July 27, 2020 and included in the Notification for Statistically Significant Levels of 40 C.F.R. Part 257 Appendix IV Constituents Above Groundwater Protection Standards for Zimmer Landfill dated August 13, 2020, at a downgradient monitoring well as follows:

• Lithium at well MW-F

In accordance with the Statistical Analysis Plan, MW-F was resampled on July 1, 2020 and analyzed for lithium to confirm the SSL. Following evaluation of analytical data from the resample event, no SSL remained. This ASD was completed by October 26, 2020, within 90 days of determination of the SSLs, as required by 40 C.F.R. § 257.95(g)(3)(ii).

¹ Natural Resource Technology, an OBG Company (NRT/OBG), 2017, Statistical Analysis Plan, Zimmer Power Station, Dynegy Zimmer, LLC, October 17, 2017.

APPENDIX C5 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (ASH POND AREAS)

The Zimmer Power Station (Zimmer Station) conceptual site model (CSM) and Description of Site Hydrogeology for the D Basin, the Gypsum Recycling Pond, and the Coal Pile Runoff Pond, hereinafter referred to as the 'Site', located near Moscow, Ohio are described in the following sections.

REGIONAL SETTING

The Ohio River Valley generally separates the Till Plains Section of the Central Lowlands Physiographic Province from the Lexington Plain Section of the Interior Low Plateaus Physiographic Province. The Central Lowlands Physiographic Province is characterized by plains of low relief with youthful to mature dissection developed on soil and rock deposits. The Till Plains Section is generally north of the Ohio River and is characterized by hills of low relief that are developed on nearly horizontal, Paleozoic sedimentary strata. Continental glaciation has affected most of the province so that bedrock is almost entirely concealed by glacial drift. Common valley fill material consists of coarse-grained outwash deposits, fine-grained lacustrine and overbank deposits, and glacial till. The bedrock consists of interbedded shales and limestones typical of the Cincinnatian Series.

SITE GEOLOGY

Zimmer Station is located on the relatively flat floor of the Ohio River Valley and is underlain by valley-fill glacial deposits. Glacial deposits directly beneath Zimmer Station consist of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet below the present ground surface. These deposits are underlain by coarser alluvial deposits that are composed of well-graded to poorly-graded sands having greater amounts of gravel with increasing depth. Bedrock beneath the unconsolidated sediments belongs to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet below the ground surface.

Cross-sections showing the subsurface materials encountered at the Site are included in an attachment to this demonstration.

SITE HYDROGEOLOGY

The CCR groundwater monitoring system consists of the follow:

- Seven monitoring wells are installed in the uppermost aquifer and adjacent to the D Basin (MW-1, MW-8, MW-9, MW 12, MW-13, MW-14 and MW-15). The unit utilizes three background monitoring wells (MW-1, MW-8 and MW-12) as part of the CCR groundwater monitoring system.
- Four monitoring wells are installed in the uppermost aquifer and adjacent to the Gypsum Recycling Pond (MW-7A, MW-8, MW-10 and MW-11). The unit utilizes one background monitoring wells (MW-8) as part of the CCR groundwater monitoring system.
- Five monitoring wells are installed in the uppermost aquifer and adjacent to the Coal Pile Runoff Pond (MW-1, MW-3S, MW-16, MW-17 and MW-18). The unit utilizes one background monitoring wells (MW-1) as part of the CCR groundwater monitoring system.

See Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration.

Groundwater is encountered in the Ohio River valley aquifer. The aquifer consists primarily of the coarser alluvial deposits described above. The thickness of the deposits ranges from approximately 50 to 65 feet and covers much of the width of the flood plain between the river and Route 52 located to the east. Porosity of the aquifer material is likely to be on the order of 20 to 40 percent given the distribution of grain sizes. The groundwater potentiometric surface on site is encountered at depths of 25 to 50 feet below ground surface (bgs) (approximately 455 to 470 feet above mean sea level [msl]). The large variability is introduced by rising and falling river stage because of a relatively direct hydraulic connection between the riverbed and the aquifer.

The aquifer receives most of its recharge from infiltration of precipitation on the valley floor; however, secondary recharge sources include adjacent upgradient aquifers in the upland, and bank storage from the Ohio River during flood stages. Recharge to the aquifer from bank storage is periodic and short-lived, and the main movement of groundwater discharge is toward the river.

Zimmer Station withdraws water from the underlying sand and gravel aquifer through eight onsite production wells, all of which are located on the southern half of the facility. In general, each of the production wells is capable of yielding between 0.720 and 0.432 million gallons per day (mgd); however, the average daily yield is approximately 0.206 mgd.

When pumping, a localized cone of depression in the groundwater surface is created that encompasses the southern and, occasionally, the central portion of the site (AEP, November, 1986). This cone of depression induces flow from the Ohio River toward the pumping wells. The hydraulic gradient of the aquifer was calculated to be on the order of 0.0025 toward the Ohio River with a west-northwest to west southwest direction. The transmissivity of the aquifer is approximately 50,000 gallons per day per foot (gpd/ft), the hydraulic conductivity is approximately 1,000 gpd/ft² (134 ft/day), and the storage coefficient of the aquifer is 0.17 (Wm. H. Zimmer, 1983).

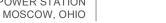
Material overlying the uppermost aquifer directly beneath Zimmer Station is comprised of glacial deposits consisting of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet bgs. Permeability tests conducted on in-situ cohesive material by American Electric Power Service Corporation, Civil Engineering Division in 1986 suggested values in the range of 9.7×10^{-9} to 1.4×10^{-8} cm/sec.

The lower confining unit underlying Zimmer Station is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet bgs. These low-yielding shale and limestone formations are approximately 400- to 600-feet thick (Luft, et. al., 1973). Groundwater yields from the bedrock strata in this region are quite limited. Generally, the bedrock is not tapped for water due to its low permeability. Those wells which do tap the bedrock aquifers generally draw water from the bedding planes and fracture zones. Due to the relatively impermeable nature of the shales and limestone underlying this region, water yields are generally insufficient for domestic use. Fresh water does not typically occur at depths greater than 150 feet bgs (Wm. H. Zimmer, 1983).

REFERENCES

American Electric Power Service Corporation, Civil Engineering Division, November 1986, Geotechnical report for the WM. H. Zimmer Coal Conversion Project.

Luft, Stanley J.1 Osborne, Robert H., and Malcolm P. Weiss. Geologic Map of the Moscow Quadrangle, Ohio - Kentucky (GQ-I069). Prepared in cooperation with The Commonwealth of Kentucky, University of Kentucky, Kentucky Geological Survey, 1973.


Zimmer, William. H., 1983, Nuclear Power Station Unit 1 Environmental Report Operating License Stage, Volume 1, Section Number 245.

CROSS SECTION LOCATION MAP

ZIMMER D BASIN (UNIT ID: 121), ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION RAMBOLL US CORPORATION A RAMBOLL COMPANY

RAMBOLL

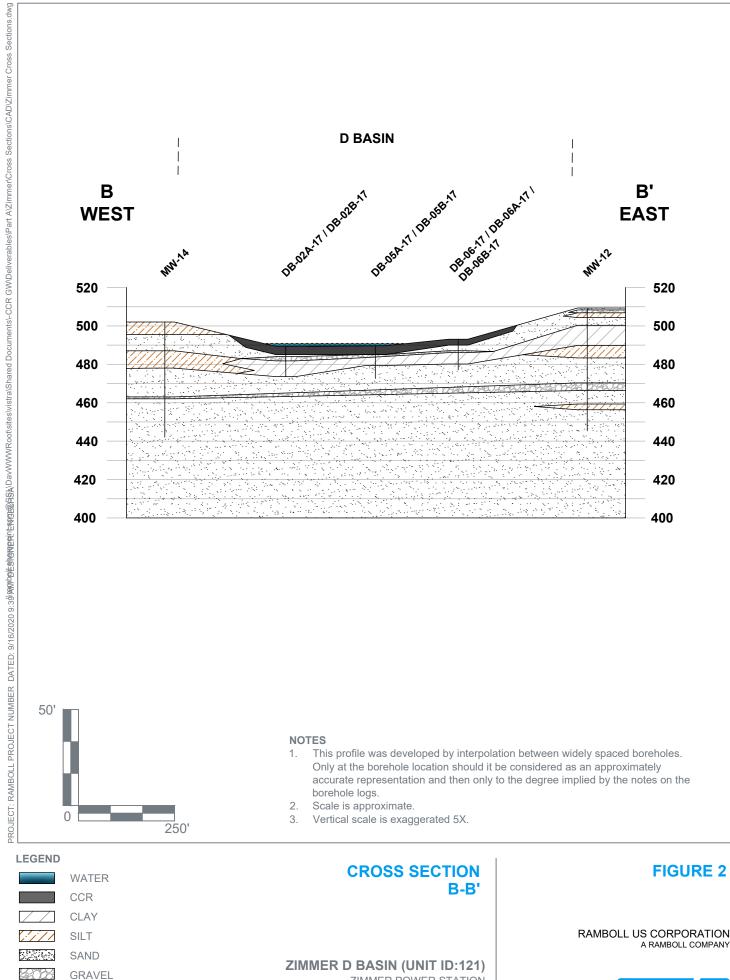
200 400

CCR MONITORING WELL LOCATION

TEST BORING LOCATION CROSS SECTION LOCATION CCR MONITORED UNIT

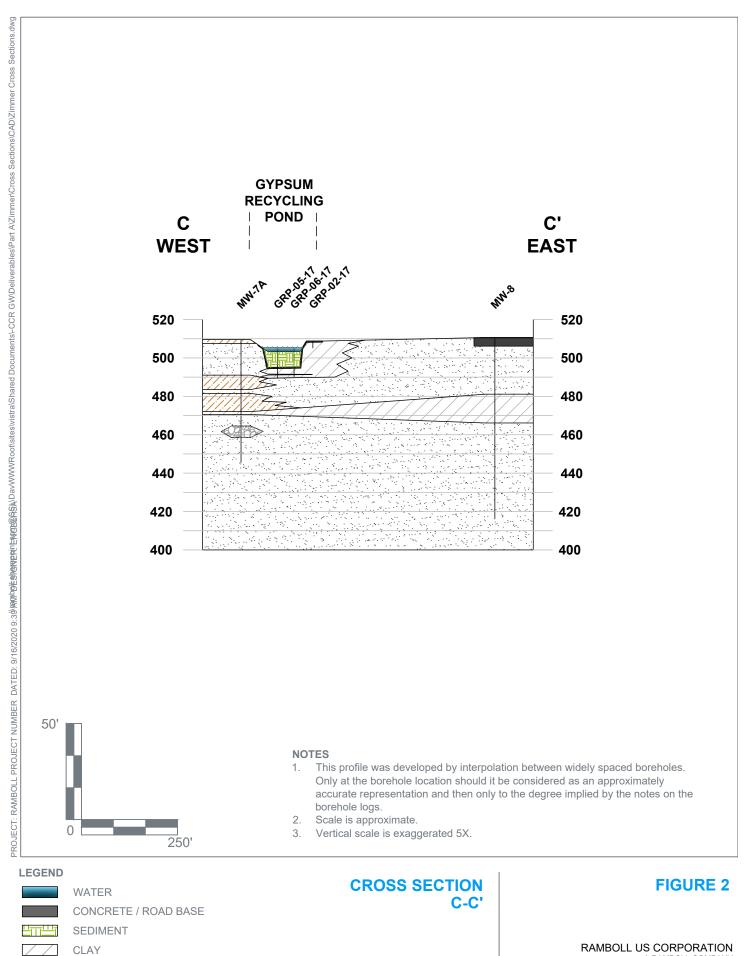
0

RAMBOLL US CORPORATION A RAMBOLL COMPANY



ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO

SILT


SAND

;i//

RAMBOLL

ZIMMER D BASIN (UNIT ID:121) ZIMMER POWER STATION MOSCOW, OHIO

A RAMBOLL COMPANY

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

;;]]

42786

SILT

SAND

GRAVEL

HYDROGEOLOGICAL CHARACTERIZATION REPORT

CCR MANAGEMENT UNIT – 122 (Landfill)

ZIMMER POWER STATION CLERMONT COUNTY, OHIO

Prepared for:

Dynegy Zimmer, LLC Job Number: 60442412 October 11, 2017

Prepared by:

525 Vine Street, Suite 1800 Cincinnati, Ohio 513.651.3440 tel 877.660.7727 fax

Approved by: Dennis P. Connair, CPG

Signature

Date:

CONTENTS

Section	Pag	je
1.0	NTRODUCTION	
2.0	SITE DESCRIPTION	.1
	SITE CHARACTERIZATION MEANS AND METHODS	
4.0	CONCEPTUAL SITE MODEL	.2
	4.1 Regional Physiography	.2
	4.2 Site Geology and Hydrogeology	.3
	4.2.1 Uppermost Aquifer	.3
	4.2.2 Material Overlying the Uppermost Aquifer	.4
	4.3.3 Materials Comprising the Lower Confining Unit	
5.0	GROUNDWATER MONITORING SYSTEM	
	5.1 Monitoring Well System Installation	.5
	5.2 Groundwater Flow – Unit 122	
6.0	REFERENCES	.7

List of Tables

Table 1	Sample Location Summary, CCR Groundwater Monitoring System
Table 2	Monitoring Well Groundwater Elevations, January 2016-July 2017

List of Figures

- Figure 1 Site Vicinity Map
- Figure 2 Site and Well Location Map, Zimmer Station Landfill (Unit ID 122)
- Figure 3 Groundwater Surface Map March 14, 2016 Zimmer Station Landfill (Unit ID: 122)
- Figure 4 Groundwater Surface Map December 14, 2016 Zimmer Station Landfill (Unit ID: 122)

List of Attachments

Attachment A	Boring Logs and Well Construction Logs
Attachment B	Well Wizard Sampling Pumps, Equipment Specifications

HYDROGEOLOGICAL CHARACTERIZATION REPORT

ZIMMER POWER STATION CLERMONT COUNTY, OHIO

[Unit 122 - Landfill]

1.0 INTRODUCTION

This Hydrogeological Characterization Report (HCR) was prepared on behalf of Dynegy Zimmer, LLC to document the character of site conditions that control the occurrence and flow of groundwater relative to the monitoring requirements for coal combustion residual (CCR) management units at the Zimmer Power Station (Zimmer) in accordance with Part 257.91 of the United States Environmental Protection Agency (USEPA) Final Rule to regulate the disposal of CCR under Subtitle D of the Resource Conservation and Recovery Act (RCRA) [40 Code of Federal Regulations (CFR) 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015].

This HCR will apply specifically to the following CCR Unit; Unit 122 (Zimmer Landfill), as defined further below.

The HCR describes the hydrogeologic context of the entire landfill site so as to inform the Qualified Professional Engineer (QPE) who is charged with certifying that the groundwater monitoring system proposed for the CCR unit meets the requirements stated in 40 CFR 257.91.

2.0 SITE DESCRIPTION

The Unit 122 is located at the intersection of State Route 756 and Turkeyfoot Road in Washington Township approximately 3 miles east of the W. H. Zimmer Station (**Figure 1**).

The Unit 122 footprint covers approximately 288 acres and is bounded by S.R. 756 on the northeast, Turkeyfoot Road on the northwest, and Fruit Ridge Road on the southwest. The area bounded by the roadway boundaries is 680 acres. Turkeyfoot Road, which is now vacated, provides limited access for local landfill construction traffic. Primary access to Unit 122 is provided by a dedicated, paved haul road from the Station to the Unit 122. The dedicated haul road is gated and not open to public traffic.

Residual wastes generated at the station are trucked to the facility for disposal in accordance with permitto-install [PTI] (Permit No. 05-9746) conditions. The PTI was effective November 2, 1988. Wastes approved for disposal include fly ash, dewatered bottom ash, pyrites, pond sediments, dewatered and stabilized flue gas desulfurization (FGD) wastes, and gypsum. Disposal activities commenced in January 1991 and have progressed through a series of fill areas or phases.

3.0 SITE CHARACTERIZATION MEANS AND METHODS

The site conditions that control the occurrence and flow of groundwater relative to the monitoring of CCR units was evaluated through a series of investigation and well installation efforts on site. The available data were primarily derived from the following resources:

• Hydrogeologic Report - December 1985, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light

Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Civil Engineering Division, Columbus, Ohio.

- Addendum to the Hydrogeologic Report June 1987, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Columbus, Ohio.
- Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)), William H. Zimmer Residual Solid Waste Landfill, Clermont County, Ohio, prepared by Duke Energy Ohio, Inc., Cincinnati, Ohio and S&ME, Inc., Dublin, Ohio, BBCM August 1998 (revised November 2012).
- Well logs for supplemental CCR monitoring wells installed around the Unit 122 (Attachment A).
- Annual evaluations (and Addendum 1-24-17) of the permit-required groundwater monitoring system conducted as required by Ohio Administrative Code (OAC) 3745-30-08(B)(5) and Section B(5) of the Facility permit-to-install (PTI) (Permit No. 05-9746) Groundwater Monitoring Plan (GWMP) dated August 1998 (revised November 2012). An evaluation of groundwater flow data is performed in order to evaluate whether the Groundwater Monitoring System is adequate for the facility.

The data from these reports were reviewed and used to evaluate geologic cross sections and potentiometric surface maps, that constitute the unified conceptual model of Unit 122 conditions as described in Section 4.0 below. Specific data cited in the sections below can be found within the documents listed above.

4.0 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) as described in the following sections addresses the requirements of 40 CFR 257.91(b), which specifies that the monitoring system design shall be based upon site-specific technical information that characterizes the following:

- 1. Aquifer thickness, groundwater flow rate, groundwater flow direction including seasonal and temporal fluctuations in groundwater flow; and
- 2. Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

4.1 Regional Physiography

The Ohio River valley generally separates the Till Plains Section of the Central Lowlands Physiographic Province from the Lexington Plain Section of the Interior Low Plateaus Physiographic Province. The Central Lowlands Physiographic Province is characterized by plains of low relief with youthful to mature dissection developed on soil and rock deposits. The Till Plains Section is generally north of the Ohio River and is characterized by hills of low relief that are developed on nearly horizontal, Paleozoic sedimentary strata. Continental glaciation has affected most of the province so that bedrock is almost

entirely concealed by glacial drift. Hills in the Till Plains are often composed of moraines or other glacial deposits (Hydrogeologic Report, December 1985). The bedrock consists of interbedded shales and limestones typical of the Cincinnatian Series.

Unit 122 is located in a transition zone between the Central Lowlands and Interior Low Plateaus Physiographic Provinces. Unit 122 lies east of the Ohio River on the uplands that rise to an elevation ranging between 700 and 850 feet National Geodetic Vertical Datum of 1929. These uplands are dissected by numerous small intermittent streams that result in an irregular set of ridges of similar elevation.

4.2 Site Geology and Hydrogeology

Unit 122 is underlain by a layer of unconsolidated sediments (glacial till) that ranges from 10 to 40 feet in thickness. The till is hard and consists of coarse, angular, gravel-sized material in a clay- and silt-rich matrix. Below the till is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations.

4.2.1 Uppermost Aquifer

The uppermost groundwater is typically encountered near the interface between the bedrock and overlying till deposits. This uppermost aquifer is continuous beneath Unit 122 and is comprised of the upper 20 feet or less of the fractured and weathered bedrock. Groundwater in this uppermost aquifer generally flows parallel to the direction of topographic slope in a manner similar to the flow of surface runoff. This is suggested by the relatively shallow depth-to-groundwater as compared to the topographic relief of the area. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns as groundwater movement may be controlled by the location of open fractures and their degree of interconnection.

A groundwater flow divide occupies the high ground between two major surface drainage channels at the site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The divide runs roughly northwest-southeast. Groundwater flows from the divide to the centerline of the drainage channels in the general downhill direction. These channels run roughly westward, exiting the site at the northern and western corners of the property.

As stated within the Addendum to the Hydrogeologic Report dated June 1987, field slug tests were performed on a total of nine observation wells in order to provide information on the site's hydrogeologic properties. These test data were used to evaluate the transmissivities of the Fairview and Kope formations, which underlie Unit 122. The aquifer test results had an average transmissivity value of 1.28 x 10^{-5} square meters per second (m²/sec) and storage coefficient of 1.27×10^{-2} , which is indicative of the low permeability characterizing the site. The observation wells, with the exception of IJ_t and IK (noted in the Addendum to the Hydrogeologic Report dated June 1987), are designed to monitor the basal contact of the glacial till and the bedrock formations. Observation Wells IJ_t and IK are screened in the glacial till and exhibit lower transmissivity values (Addendum to the Hydrogeologic Report – June 1987).

The primary influences on groundwater flow beneath Unit 122 are infiltration of rainfall and other surface water and the lack of infiltration due to temporary or permanent capping of the landfill.

4.2.2 Material Overlying the Uppermost Aquifer

Material overlying the uppermost aquifer is comprised of unconsolidated sediments (glacial till) that range from 10 to 40 feet in thickness. The till is hard and consists of coarse, angular, gravel-sized material in a clay- and silt-rich matrix. Permeability tests conducted on test pit samples by American Electric Power Service Corporation, Civil Engineering Division in 1985 suggested a mean value of 6.18 x 10^{-6} centimeters per second (cm/sec) within the boundaries of Unit 122. Permeability tests conducted on the undisturbed Shelby tube samples gave a mean value of 5.78 x 10^{-8} cm/sec (Hydrogeologic Report - December 1985).

4.3.3 Materials Comprising the Lower Confining Unit

The lower confining unit underlying the site is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations. These low-yielding shale and limestone formations are approximately 400- to 600-feet thick (Luft, et. al., 1973).

Groundwater yields from the bedrock strata in this region are quite limited. Generally, the bedrock is not tapped for water due to its low permeability. Those wells that do tap the bedrock aquifers generally draw water from the bedding planes and fracture zones. Due to the relatively impermeable nature of the shales and limestone underlying this region, water yields are generally insufficient for domestic use. Saline to brackish waters have been encountered at 50 feet below the surface of Unit 122. Fresh water does not typically occur at depths greater than 150 feet below the surface.

5.0 GROUNDWATER MONITORING SYSTEM

Pursuant to 40 CFR § 257.90(b)(1), by October 17, 2017, an owner and operator of a CCR unit must install a groundwater monitoring system that meets the requirements of 40 CFR § 257.91. The groundwater monitoring system must meet the CCR Rule's performance standard, which requires the system to consist of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer that accurately represent the quality of:

- (1) background groundwater that has not been affected by leakage from a CCR unit; and
- (2) groundwater passing the waste boundary of the CCR unit—the downgradient monitoring system must be installed at the waste boundary that ensures detection of groundwater contamination in the uppermost aquifer and must monitor all potential contaminant pathways.

The collection of monitoring wells that comprise the CCR groundwater monitoring system for Unit 122 consists of the following:

- Ten (10) PTI-required monitoring wells (MW-3, MW-9D, MW-11D, MW-13S, MW-16D, MW-18, MW-20D, MW-21, MW-22, and MW-24), installed July 1985 through August 1989, February 1997, February 2009, and April 2010,
- Five (5) supplemental monitoring wells (MW-D, MW-E, MW-F, MW-H, and MW-G), installed November/December 2015.

The monitoring well locations are illustrated on **Figure 2**. As-built specifics of each well installation are summarized on **Table 1**. The boring and well construction logs for the wells are located in **Attachment A**.

The section below provides details of the design, installation, development, and decommissioning of any monitoring wells, piezometers and other measurement, sampling, and analytical devices constituting the groundwater monitoring system for the subject site so as to support QPE certification of the system as required under 40 CFR 257.91(e)(1).

5.1 Monitoring Well System Installation

Preparation tasks prior to the installation of any part of the groundwater monitoring system involved preparation of a health and safety plan for all site activities; coordination of site activities with Station security requirements; and clearance and placement of drilling locations with Duke Energy/Dynegy Zimmer engineering staff to ensure safe work conditions by avoiding underground and overhead utilities, traffic hazards, and other operational hazards.

Field activities for all monitoring well installations involved a survey and utility clearance of the proposed monitoring well locations, drilling and installation of the monitoring wells, development of monitoring wells, and a final elevation and location survey of the monitoring wells. For all monitoring wells installed at Unit 122, the drill rig and all downhole equipment were decontaminated by pressure cleaning after mobilization to the first well site and between drilling locations in order to prevent the introduction of contaminants to the wells.

Permit-Required Monitoring Wells

Drilling and well installation activities for monitoring wells MW-3, MW-9D, MW-11D, MW-13S, MW-16D, MW-18, MW-20D, MW-21, MW-22, and MW-24) were conducted between July 1985 and August 1989, February 1997, February 2009, and April 2010. The PTI groundwater monitoring system wells were installed by S&ME (formerly BBCM). The monitoring wells installed at the site were set into boreholes drilled with auger and rotary drilling methods. It is reported that proper decontamination procedures were used during the drilling of the borings and installation of the wells.

The wells have similar construction: 2-inch diameter polyvinyl chloride (PVC) casing with machine-slotted PVC well screens ranging from 5 to 20 feet in length located at the bottom. Annular space adjacent to the screens is filled with sand, and a bentonite seal is located atop the sand. The remaining annular space is filled with cement/bentonite grout. The wells are finished in concrete well pads with steel protective casings and locking caps.

Monitoring well installation was conducted in accordance with the specifications of the approved Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)) as described in Part G of the Site Investigation Report included as Section 4 of the PTI application. As-built specifics of each well installation are summarized on **Table 1**.

Supplemental Monitoring Well

Monitoring wells MW-D, MW-E, MW-F, MW-H, and MW-G were installed November/December 2015 by roto-sonic drilling methods. Drilling was conducted by Frontz Drilling Inc. located in Wooster, Ohio (Ohio Certified Driller ODH Registration Number 0120) under the observation of AECOM (formerly URS) personnel. Soil samples were collected continuously in 5- or 10-foot intervals in order to classify the physical characteristics of the unsaturated and saturated zones. The wells were constructed following the same protocols as the existing wells on site with 10 feet of 0.010 slot, 2-inch diameter PVC screen. The targeted depths placed the well screens at roughly the same elevation as the existing uppermost aquifer monitoring wells to facilitate integration of new and old data.

Surface Completion – All Monitoring Wells

With the exception of monitoring well MW-G, all of the monitoring wells were completed 1 to 3 feet above ground surface with a locking steel casing, 4 by 4 foot concrete pad (sufficiently deep to protect against frost heave), and in areas of high traffic three (3) or four (4) surrounding bollard posts were installed to protect against vehicle strikes. Monitoring well MW-G was completed at the surface as a flush-mount casing to accommodate for vehicle access to key landfill operations. Each casing was painted with a high visibility, rust-preventative paint and the well number was painted on the casing in a contrasting color.

All of the wells were developed after installation to promote hydraulic connection to the aquifer. Development involved hand-bailing equipment and /or the use of a small submersible pump to over-pump and surge the well until water from the entire screened interval ran clear.

The location, ground surface elevation, and top of internal casing elevation for each monitoring well were surveyed by a licensed surveyor utilizing the local reference datum elevations. These survey data, along with well construction details, are presented in **Table 1**.

All of the monitoring wells were equipped with dedicated Well Wizard[®] bladder pumps. The bladder pump specifications, installation guide, and warranty information supplied by the vendor are provided as **Attachment B**.

5.2 Groundwater Flow – Unit 122

Groundwater flow conditions for Unit 122 were evaluated through eight baseline CCR monitoring events, supplemented by permit-required annual evaluation of the groundwater monitoring system since 2003.

Water level data collected during the eight baseline CCR monitoring events from January 2016 through July 2017 are summarized on **Table 1**. These data were used to construct piezometric surface maps to illustrate seasonal groundwater flow conditions for the uppermost aquifer [**Figure 3** (March 2016) and **Figure 4** (December 2016)]. These data and figures are representative of general conditions at the site and support the following analysis.

The uppermost groundwater is typically encountered near the interface between the bedrock and overlying till deposits. This uppermost aquifer is continuous beneath the site and is comprised of the upper 20 feet or less of the fractured and weathered bedrock. Groundwater in this uppermost aquifer generally flows parallel to the direction of topographic slope in a manner similar to the flow of surface runoff. This is suggested by the relatively shallow depth-to-groundwater as compared to the topographic relief of the area. However, because this groundwater occupies secondary porosity in the thin limestone units of the predominantly shale bedrock, the potential exists for locally unpredictable flow patterns as groundwater movement may be controlled by the location of open fractures and their degree of interconnection.

A groundwater flow divide occupies the high ground between two major surface drainage channels at the site (Little Indian Creek and an unnamed tributary to Little Indian Creek). The divide runs roughly northwest-southeast. Groundwater flows from the divide to the centerline of the drainage channels in the general downhill direction. These channels run roughly westward, exiting the site at the northern and western corners of the property.

6.0 **REFERENCES**

- Addendum to the Hydrogeologic Report June 1987, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Columbus, Ohio.
- Groundwater Monitoring Program Plan (Lateral Expansion PTI, OAC 3745-30-05(C)), William H. Zimmer Residual Solid Waste Landfill, Clermont County, Ohio, prepared by Duke Energy Ohio, Inc., Cincinnati, Ohio and S&ME, Inc., Dublin, Ohio, BBCM August 1998 (revised May 2012).
- Hydrogeologic Report December 1985, The Zimmer Plant Flue Gas Desulfurization Waste Landfill Site, prepared for The Cincinnati Gas & Electric Company, The Dayton Power and Light Company, Columbus and Southern Ohio Electric Company, prepared by American Electric Power Service Corporation, Civil Engineering Division, Columbus, Ohio.
- Luft, Stanley J.1 Osborne, Robert H., and Malcolm P. Weiss. Geologic Map of the Moscow Quadrangle, Ohio - Kentucky (GQ-I069). Prepared in cooperation with The Commonwealth of Kentucky, University of Kentucky, Kentucky Geological Survey, 1973.

Tables

Table 1. Sample Location Summary CCR Groundwater Monitoring System CCR Rule Groundwater Monitoring CCR Unit Name: Unit ID:

Zimmer Landfill 122

Well ID	MW-3	MW-9 D	MW-11 D	MW-13 S	MW-16 D	MW-18	MW-20 D	MW-21
Well Location Latitude	38° 51' 2.0988"	38° 51' 29.4582"	38° 51' 37.3566"	38° 51' 39.5382"	38° 51' 11.8512"	38° 51' 23.3208"	38° 51' 32.9502"	38° 51' 17.9166"
Well Location Longitude	-84° 10' 0.6672"	-84° 9' 47.7252"	-84° 9' 47.649"	-84° 9' 27.4176"	-84° 10' 18.948"	-84° 9' 12.369"	-84° 10' 6.204"	-84° 9' 26.3052"
Well Construction Material	PVC							
Well Diameter (inches)	2	2	2	2	2	2	2	2
Top of Casing Well Elevation (ft)	872.85	857.91	851.85	862.1	825.22	888.57	824.68	862.15
Well Depth Below Ground Surface (ft)	35.34	69.53	35.79	19.01	30.07	17.47	38.61	37.16
Screen Length (ft)	10	10	10	10	10	10	10	10
Top of Screen Elevation (ft)	845.65	796.44	824.3	851.6	803.6	877.17	794.38	832.25
Bottom of Screen Elevation (ft)	835.65	786.44	814.3	841.6	793.6	867.17	784.38	822.25
Well Stick-up Above Ground Surface (ft)	1.86	1.94	1.76	1.49	1.55	3.93	1.69	2.74
Hydraulic Position of Well ⁽¹⁾	U	D	D	D	D	U	D	D

Notes:

ft = feet

PVC = polyvinyl chloride

1. upgradient (U) or downgradient (D)

Table 1. Sample Location Summary CCR Groundwater Monitoring System CCR Rule Groundwater Monitoring CCR Unit Name: Unit ID:

Zimmer Landfill 122

Well ID	MW-22	MW-24	MW-D	MW-E	MW-F	MW-G	MW-H
Well Location Latitude	38° 51' 22.482"	38° 51' 42.624"	38° 51' 40.0962"	38° 51' 27.09"	38° 51' 13.5936"	38° 51' 22.7298"	38° 51' 17.463"
Well Location Longitude	-84° 9' 37.08"	-84° 10' 1.0446"	-84° 9' 55.7856"	-84° 9' 40.4064"	-84° 9' 40.4526"	-84° 10' 11.6826"	-84° 10' 17.1804"
Well Construction Material	PVC	PVC	PVC	PVC	PVC	PVC	PVC
Well Diameter (inches)	2	2	2	2	2	2	2
Top of Casing Well Elevation (ft)	866.94	852.36	852.34	863.42	884.02	821.4	811.13
Well Depth Below Ground Surface (ft)	37.29	34.41	35.02	32.73	29.78	67.7	27.02
Screen Length (ft)	10	10	10	10	10	10	10
Top of Screen Elevation (ft)	836.97	826.65	824.82	838.03	861.7	764.39	792.03
Bottom of Screen Elevation (ft)	826.97	816.65	814.82	828.03	851.7	754.39	782.03
Well Stick-up Above Ground Surface (ft)	2.68	1.3	2.75	2.91	2.79	(0.44)	2.33
Hydraulic Position of Well ⁽¹⁾	D	D	D	D	D	D	D

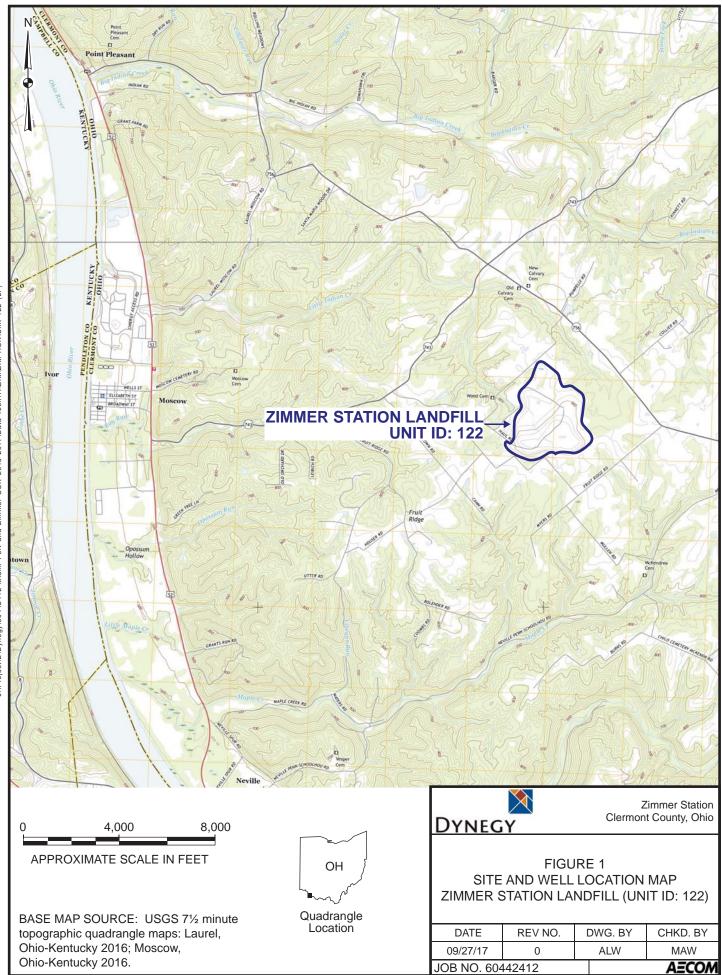
Notes:

ft = feet PVC = polyvinyl chloride

1. upgradient (U) or downgradient (D)

TABLE 2

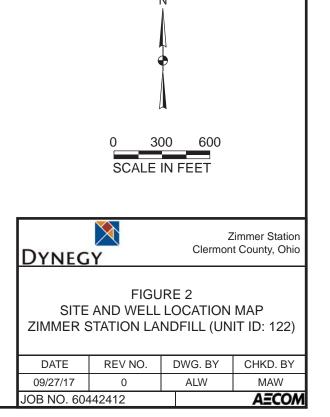
MONITORING WELL GROUNDWATER ELEVATIONS - JANUARY 2016-JULY 2017

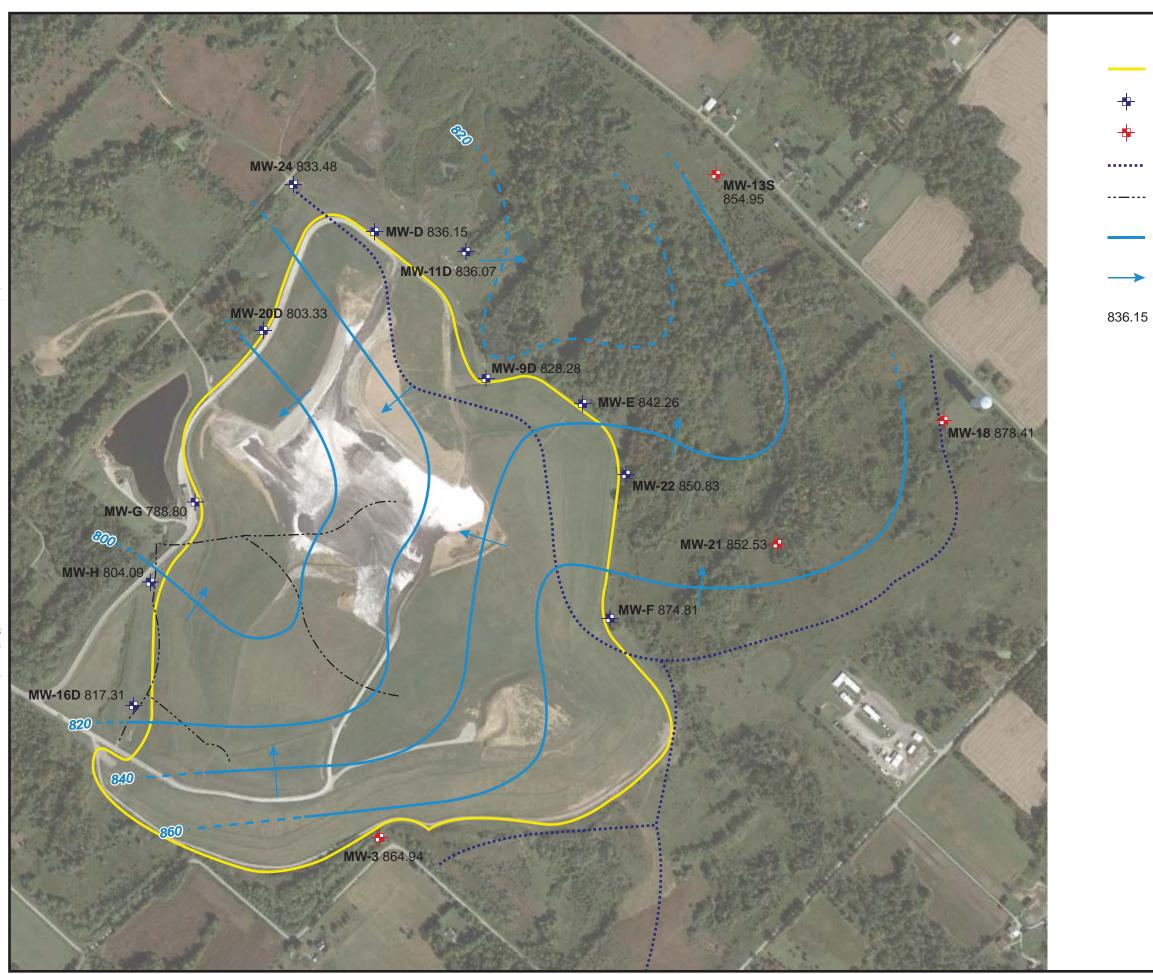

ZIMMER STATION - CLERMONT COUNTY, OHIO

ZIMMER LANDFILL (122)

	Reference	Januar	y 26, 2016	March	14, 2016	June 1	3, 2016	Septemb	er 28, 2016	Decembe	er 14, 2016	April 1	17, 2017	June	8, 2017	July 1	2, 2017
Well ID	Elevation Top of Casing* (feet, NAVD 88)	Depth to Wate (feet)	Groundwater r Elevation (feet, NAVD 88)	Depth to Water (feet)	Groundwater Elevation (feet, NAVD 88)												
MW-3	872.85	10.68	862.17	7.91	864.94	11.20	861.65	13.13	859.72	12.87	859.98	9.81	863.04	10.78	862.07	11.11	861.74
MW-9D	857.91	30.80	827.11	29.63	828.28	30.83	827.08	31.11	826.80	30.96	826.95	30.89	827.02	30.91	827.00	30.93	826.98
MW-11D	851.85	16.85	835.00	15.78	836.07	17.20	834.65	17.54	834.31	17.54	834.31	17.31	834.54	17.27	834.58	17.16	834.69
MW-13S	862.1	8.54	853.56	7.15	854.95	NM**	NM	NM**	NM	NM**	NM	8.53	853.57	11.80	850.30	10.38	851.72
MW-16D	825.22	9.03	816.19	7.91	817.31	9.07	816.15	9.43	815.79	9.53	815.69	9.22	816.00	9.19	816.03	9.05	816.17
MW-18	888.57	13.28	875.29	10.16	878.41	NM	NM	NM	NM	NM	NM	12.54	876.03	15.77	872.80	14.67	873.90
MW-20D	824.68	23.83	800.85	21.35	803.33	22.70	801.98	21.75	802.93	23.12	801.56	23.79	800.89	24.01	800.67	23.82	800.86
MW-21	862.15	11.35	850.80	9.62	852.53	10.81	851.34	13.92	848.23	15.80	846.35	11.13	851.02	10.94	851.21	11.48	850.67
MW-22	866.94	17.38	849.56	16.11	850.83	17.18	849.76	17.36	849.58	17.59	849.35	17.94	849.00	17.77	849.17	17.75	849.19
MW-24	852.36	21.13	831.23	18.88	833.48	20.59	831.77	22.87	829.49	23.06	829.30	19.40	832.96	20.17	832.19	20.03	832.33
MW-D	852.34	17.28	835.06	16.19	836.15	17.45	834.89	18.83	833.51	19.44	832.90	18.49	833.85	17.66	834.68	17.51	834.83
MW-E	863.42	26.02	837.40	21.16	842.26	26.01	837.41	26.30	837.12	26.18	837.24	25.19	838.23	25.23	838.19	25.66	837.76
MW-F	884.02	9.74	874.28	9.21	874.81	9.82	874.20	12.97	871.05	14.54	869.48	9.56	874.46	10.11	873.91	11.07	872.95
MW-G	821.4	34.19	787.21	32.60	788.80	34.03	787.37	34.40	787.00	34.49	786.91	34.12	787.28	34.38	787.02	34.37	787.03
MW-H	811.13	8.60	802.53	7.04	804.09	8.70	802.43	10.25	800.88	10.68	800.45	8.24	802.89	9.24	801.89	9.37	801.76

* = Reference elevations of monitoring wells surveyed by American Land Surveys 1-27-16 ** = Well was dry to the top of pump


Figures



MW-13S MW-24 MW-D MW-11D MW-20D MW-9D MW-E MW-18 MW-22 MW-G **MW-21** MW-H MW-F MW-16D MW-3

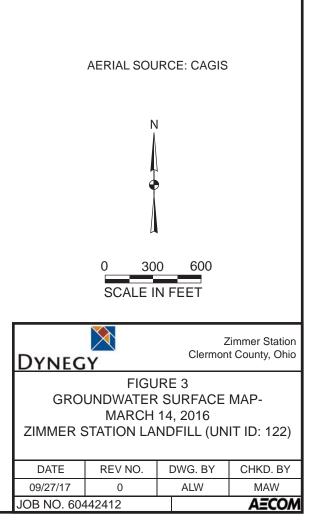
-∲--∳- UNIT BOUNDARY DOWNGRADIENT MONITORING WELL LOCATION UPGRADIENT MONITORING WELL LOCATION

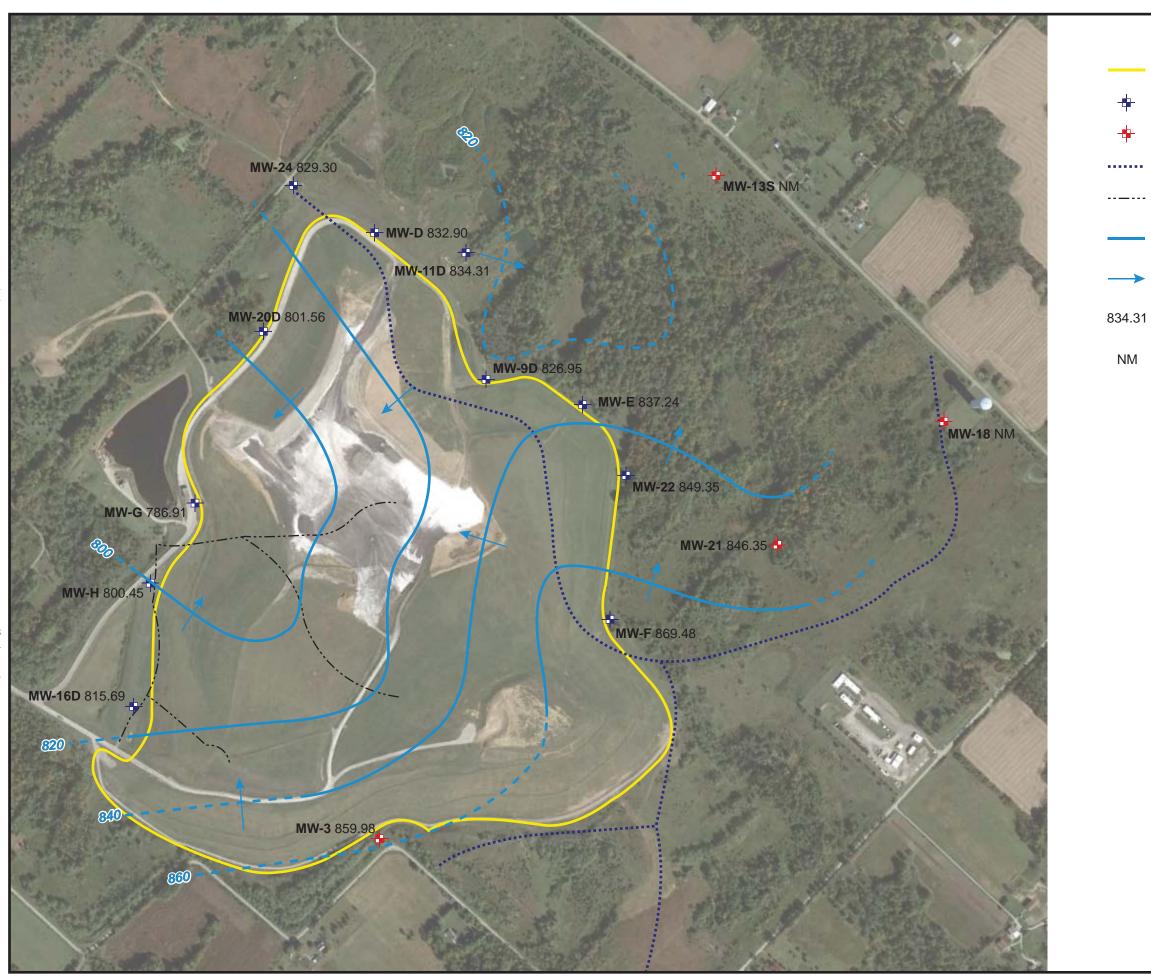
AERIAL SOURCE: CAGIS

UNIT BOUNDARY

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION


GROUNDWATER DIVIDE


······· FORMER DRAINAGE PATH LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 14, 2016

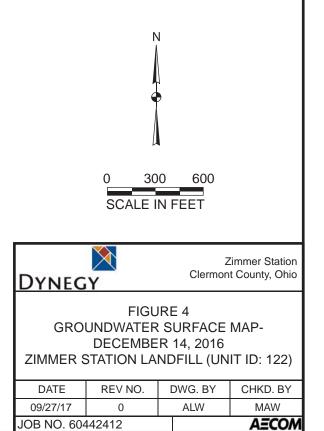
UNIT BOUNDARY

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

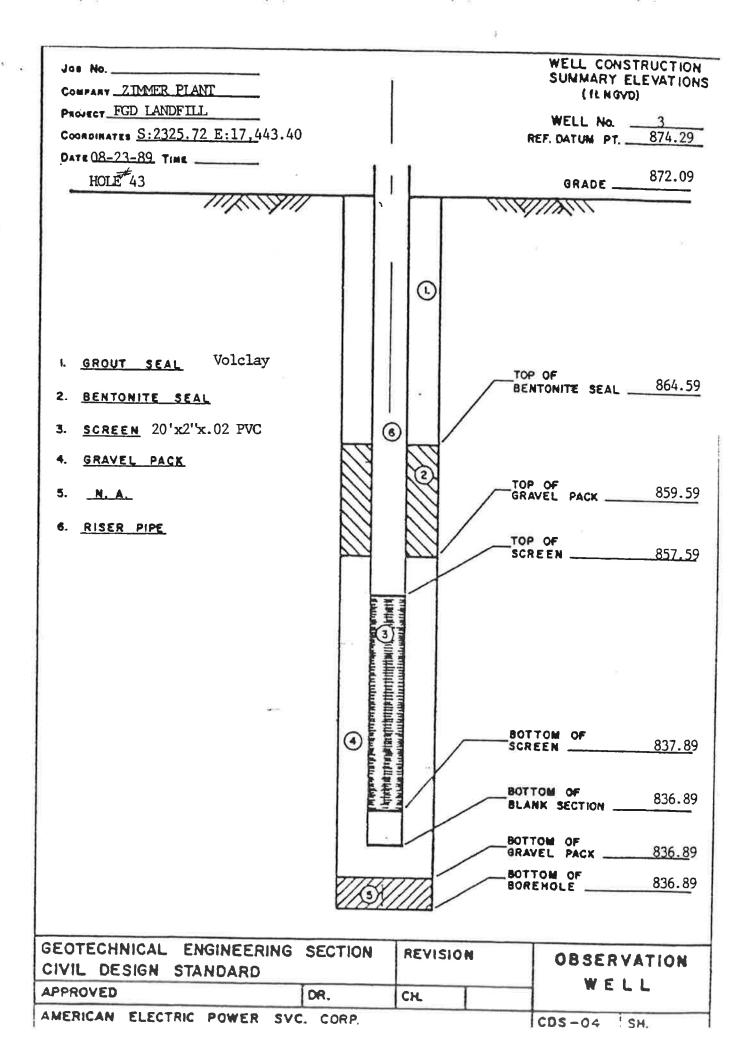
GROUNDWATER DIVIDE

······· FORMER DRAINAGE PATH LOCATION


WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 14, 2016


NM NOT MEASURED

Attachment A

Boring Logs and Well Construction Logs

	EV. Comp Roje Coord	ANY LGT DINAT NTION ER LI	Zin		32 32	м.d 5.7 ша:	ANI Fi 2 2 Dr	11 E: 19	AEP 7. 44 	CIVIL 43.40			DWER SERVICE CORPORATION IEERING LABORATORY F BORING Well 3 BORING NO. 43. DATE 5-22-89 SHEET 1 OF 2 TYPE OF SAMPLES: SPT X 3" TUBE CORE X CASING USED SIZE HW DRILLING NUO USED BORING BEGUN A-22-89 BORING COMPLETED F-22-89 GROUND ELEVATION 872.09 REPEARED TO DATUM FIELD PARTY HOINCIL- DREST RIG 75
-	NUMBER	0 18	м Р С В Р Г Н Р Е Е 1 1 М Т		37 PER RE:	TANDA NETRA SISTA	AD TION NCE / 8"	TOTAL LENGTN MECONERY	P40	DEPTH IN PEET	644FH 1.06	0 5 6 8	DENTIFICATION
		9.0 4.0 3. , 2 1. , 3 1	5.25 H ASING									CL	Clusy - Multi-celon Br-moist med to how plusticity
	N	W C	_	1068		3" 6"			_	[1	RECORDER

<u>___</u>

8 V.

FORM CE-5 Rev. 1/87

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY ORING

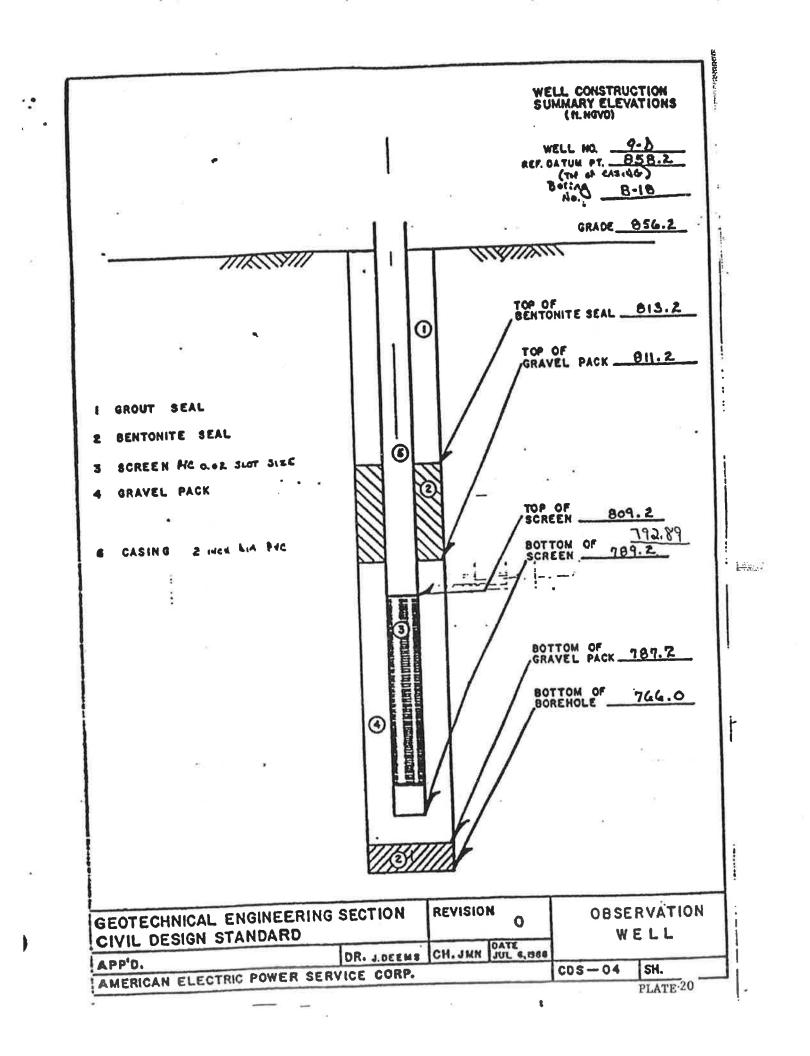
L	0	G	0	F	8

Jos No.	_
COMPANY	_
DEALECT	

PROJECT

COORDINATES

	1.1		
LOCATION	0#	BORING	


WATER LEVEL	
TIME	
DATE	

.

TYPE OF SAMPLESI SPT	SHEET <u>Z</u> OF 	
BORING BEGUN	BORING COMPLETED	
FIELD PARTY	AEFERRED TO C	DATUN

.

SAMPLE NUMBER		TH TEET TO	PENE	NOARC TRATI	. R . O	AQ D	OEPTH In Peet	14454 194	C S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S Notes
	19.1	22.7			3.5	0				19.1 - 35.2 GRAY HARD Lime STONE W/ LAYERS OF GRAY CITY SHAL	
	<u> </u>	44.1	(11)				- Indu			LAYENS OF GAMY CINY SHAL	e
	22.7	30.0			6.9	0	8 444444444444444444444444444444444444				
							hun				
							ntmi				
3	8.0	35.2		1	5.1	37	30 				
							ساميتماني				
				1			աստե				
							որոր				BRISTHILE JW
										Stopped Hole 35,2	
							باستشب				
н	W CA	25 H S SING AD RE ROC	VANCER	4" 3"						8 a	

Statute with the second statute statute with the second statute st	OMP ROJ	EST 💆	A E I	and the second se	and the second division of the second divisio	and the second data	and the second se			_		WER SERVICE COPPORATION EERING LABORATORY BORING BORING NO. <u>B-IR</u> DATE <u>2-3-87</u> TYPE OF BORING: SPT <u>X</u> 3"TUBE	
The control of the c		ATION	OF BORI	NGI N.	500	D	E 11	8170	st			CASING USED SIZE HW DRILLING	NUG USED
Date Date 3A WALC 3TANDARD $E ACC OPTA 3 A WALC 3TANDARD E ACC OPTA 3 A WALC STANDARD E ACC OPTA 3 A WALC STANDARD E ACC OPTA 3 C PTA ACLIFATION E C ACC OPTA 1 A CLIFATION E C ACC OPTA IN 1 A CLIFATION E C ACC OPTA IN 1 A CLIFATION ACLIFATION IN IN IN 1 A CLIFATION IN IN IN IN IN 1 A CLIFATION IN IN IN IN IN IN 1 A CLIFATION IN IN IN IN IN IN IN 1 A CLIFATION IN$	WA	TER LE	VEL									GAOUND ELEVATION 854 20	E0
Same as Same as	-					_							0.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			l									FIELD PARTY Smith - Bumg Benter 1	Rig 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	11					AL GTH VLRY	800	DEPTH			SOIL / ROCK	DRILLER
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M 40	1N 7 8 2					TOT LEN	%	FEET	1 4 2 0		IDENTIFICATION	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1	1		T	T	1	1			_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1			1				-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		1	+-	-	1-						
10 312 1 12 1 12 <td< td=""><td>-</td><td></td><td></td><td>1</td><td>+</td><td></td><td></td><td></td><td>z —</td><td></td><td>_</td><td></td><td></td></td<>	-			1	+				z —		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			+		+	-			F		5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	4.0	5.5	7	9	12	15		4 -	Ē		Clay org Ro + Gamy mottled	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1							E	ł		maist - med to how	
9.0 10.5 5 8 9 18 10 10.5 5 8 9 18 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 10 10 10 10 14.0 15.5 22 50 11 17 10 14.0 15.5 22 50 11 17 10 10 14.0 15.5 22 50 11 17 10 10 10 14.0 15.5 22 50 11 17 10 10 10 14.0 15.5 22 50 11 17 10 10 10 15.7 16 16 17 10 10 10 10 10 17.0 18 10 10 <t< td=""><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>Ξ</td><td>t</td><td></td><td>flashert f</td><td></td></t<>				1	1				Ξ	t		flashert f	
9.0 10.5 5 R 9 18 10 10.5 5 R 9 18 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 10 10 10 14.0 15.5 22 50 11 14 10 15.5 22 50 11 14 18.0 19.0 10 10 10 19.0 10 10 10 10 10 19.0 10 10 10 10 10 10 19.0 10 10 10 10 10 10 10 19.0 10 10 10 10 10 10 10 10 <	_			-		_	-		6 =	2	1	1	
9.0 10.5 5 R 9 18^{-1} 10 10.5 5 R 9 18^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10^{-1} 10^{-1} 10^{-1} 10 10 10^{-1} 10^{-1} 10^{-1} 10 10 1									Ξ	╞	-		
9.0 10.5 5 R 9 18^{-1} 10 10.5 5 R 9 18^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10 10^{-1} 10^{-1} 10 10 10^{-1} 10^{-1} 10^{-1} 10 10 10^{-1} 10^{-1} 10^{-1} 10 10 1		1	1	1	-	1-			E	ŀ			
10 10 11 10 11 10 12 12 12 12 12 12 140 $15,5$ $15,5$ 22 140 $15,5$ $15,5$ 22 140 $15,5$ $15,5$ 22 140 $15,5$ $15,5$ 22 140 $15,5$ $15,5$ 22 140 $15,5$ $15,5$ 22 $15,5$ 22 $15,5$ 22 $15,5$ 22 $15,5$ 22 $15,5$ 22 $15,5$ 22 $15,5$ 22 16 110 16 110 16 110 170 110 170 1100 170 1100 170 1100 1700 11000 170	_			-	-	-			8 -	E			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9.0	1. 4	<	0		10"			-	-		
$14,0 15,5 22 50 - 11 14 - 5awdy Clay - 7e 5a + 6awy \\ maTile - malst - walst - wy Same \\ Lime stane To Wet \\ \hline \\ 16 - 16 - 16 - 16 - - 16 - - - - - - - - - $	-	1.0	10.5	1	10	13	10			ł	-	Same as Samala 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-	-			/0 =	E		Same AS Sample No. 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3								E	F			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3					+			1		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_								=		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									~]			(K)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-						+	-	The second secon		_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	14,0	15.5	22	50	-	hr 1		Ξ	-	-	6	
6"x 3.25 H SA HW CASING ADVANCER 4" X			1	Tas	1	1	1		14	F		MANOY CIAY- Ve. BR. + 6RAY	
6"x 3.25 H SA HW CASING ADVANCER 4" X	_											Limestone Eans Stand	
6"x 3.25 H SA HW CASING ADVANCER 4" X									Ξ			Renction To Net	
6"x 3.25 H SA HW CASING ADVANCER 4" X	-								16 -		_		
6" x 3.25 HSA 20 HW CASING ADVANCER 4" X	1								Ξ	C	4		
6" x 3.25 HSA 20 HW CASING ADVANCER 4" X						1-			1	-	-		and the later of some of the
6"x 3.25 H SA HW CASING ADVANCER 4" X									E		-		
6"x 3.25 HSA 20 HW CASING ADVANCER 4" X								-		F			
6"x 3.25 HSA 20 HW CASING ADVANCER 4" X	_	19,0	20.5	10	18	33	12		T.			SANdy GARYCHY CLAY- Blue	and the second second
6"x 3.25 HSA 20 HW CASING ADVANCER 4" X	ł								=	· E		maist - STRAMA REACTION TO	
HW CASING ADVANCER 4" X	T	6"- 3	28 11			L		_	20-7		1	H.C.L - Limestone GRAyel	
					28 A	н (
						c l							

$ \frac{3}{2} = \begin{bmatrix} 1 & rest \\ rest$	OMP.	ANY	an y wa	e znevele	مریکت: به اختیا د				10. Jan 19.	_		BORING NO. 18-18 DATE	SHEET 2 OF
WATCH LEVEL GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE GROUND ELEVATION APPENANCE APPENA		TION O	P BORIN	G 1		يهيو هذ		•••	177	• •	10	CASING USED SIZE DRILLING	MUD USED
File Part File Part The part </th <th>WAT</th> <th>ER LEV</th> <th>EL</th> <th></th> <th></th> <th>31</th> <th></th> <th></th> <th></th> <th></th> <th>8</th> <th>GROUND ELEVATION BUNING COUPLET</th> <th>TO</th>	WAT	ER LEV	EL			31					8	GROUND ELEVATION BUNING COUPLET	TO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	_				_							DAT
$ \frac{1}{2} 1$	UAI	2									J	FIELD PARTY	Ris
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	wa	5 4 1		3	TAND	DRA		RGO	DEPTH	8			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MFL NBEI	0 6		1	-	ATION	NGT	01	1 1.1	H H	Ű		CRILLER'S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S S			1		/ 8*	L L C	1%	FEET	GHAP		IDENTIFICATION	NOTES
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1	1	T	T	1	1				·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-		20-	1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1				- E				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1 3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									22			r .c .c	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		1	1		1	3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1	1			Ī				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	24.0	25.5	4	18	12	14		24 —			Clay- Blue- moisT- STRONG	
2L = 2L = 2L = 2L = 2L = 2L = 2L = 2L =									3		-	KendTion To HCL. W Some I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									1 3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>		-					26 -		_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1						1		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1					i i				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									28 -				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	29.0	30.5	5	8	10	16		Ξ			Same as Samala No. 5	
32 7 36.0 35.5 4 6 10 4 34 Same BS Sample NO 5 maae Sawd 36 37.0 445 4 5 16 13 6" x 3.25 HSA 6" x 3.25 HSA 40 4 40 4 32 32 32 32 32 32 32 32 32 32					1				Ē				
7 34.0 35.5 4 6 10 4 54 5 84 5 84 5 84 5 84 5 84 5 85 50 0 1 2 NO 5 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 1 1 1 1 1 1 1 1 1 1 1			+				-	-	30	-			
7 34.0 35.5 4 6 10 4 54 5 84 5 84 5 84 5 84 5 84 5 85 50 0 1 2 NO 5 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 1 1 1 1 1 1 1 1 1 1 1									1				
7 34.0 35.5 4 6 10 4 54 5 84 5 84 5 84 5 84 5 84 5 85 50 0 1 2 NO 5 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 50 0 2 5 50 0 2 1 2 NO 5 1 1 1 1 1 1 1 1 1 1 1 1 1									Ξ				
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA									32-		-		
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA									Ξ				
B 39.0 495 4 5 16 13 6"x 3.25 HSA									111				
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA 6"x 3.25 HSA B 39.0 49.5 HSA B 30.5 HSA	7	34.0	35.5	4	6	10	¥.					Same AS fample NO 5	
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA				<u>, a</u>	1.18	1 - 1		- (by)	Ξ			MARE SAND	
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA	- 11			÷.	1	1.1					_	2	
B 39.0 445 4 5 16 13 6"x 3.25 HSA					-					ł	-		
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA				<u> </u>	1.1				- i A B	ł			
B 39.0 49.5 4 5 16 13 6"x 3.25 HSA			•	1.854					. 8		_		
6"x 3.25 H SA					1-	-			38 -	ł		Same as Samala va S	
6"x 3.25 H SA #0-	8	39.0	yas	4	3	16	13	1		t		Martine and champie word	
6"x 3.25 H SA #0-	0		5	-	1.00						_		
HW Casura Annances An I	- 1	6"x 3	5.25 H	SA	L	<u> </u>				+	-		and the state of the state of the state of the state of the state of the state of the state of the state of the
	5	HW C	ASING A		cen 4	1.00			1			والأخبر تعقبه أنجا وتتلك وحاري	
NG CORE ROCK	_	_		008	_	14							小学校のない

3 8

- 65

OMP ROJ	ECT	Control 7	•••••	nge ek Start			.	den 84		<u>.</u>	بة من به ر	WER SERVICE COF ORATION EERING LABORATURY BORING BORING NO. 12-18 DATE TYPE OF BORING: SPT 3"TUBE CASING USED SIZE DRILLING BORING BEGUN BORING COMPLET GROUND ELEVATION REFEREED	SHEET 3 OF
	ATION	or Born	NGL		-						1	CASING USED SIZE DRILLING	CORE
WA		WPI I				-	1	·			-	BORING BEGUN BORING COMPLET	E0
TIN	E	-									-	GROUND ELEVATION REFERRED	то
DA1	'E								_		1		D
											-	FIELD PARTY	Rig
س مع		WPLE		TAND	490	1 1	RQI	0 000	ргн	3	1 10		
NUMBER		ЕРТН. 	100		ATICH Ance	1453	101	1 0	N	1	10	SOIL / ROCK	DRILLER
	1	тен) Н то	1		/ e*	Lo Lo	1%) FE	ET	44	0	IDENTIFICATION	NOTES
	1	1 19	1 8	<u> </u>	1 6				_	()	<u> </u>		
		1									-		
				1		1	1	- 40			-		
									=				
					1		1		Ξ				
						1	-	42				1 141 1 14	
						1			Ξ				1
			-				-	-	-				
	-	1955		4	ł,	1. "	0		Ξ			Clay- Blue GRAY maist	
T	199.5	1953	1.	1-	16	16		- 44			-	To we T- med. to low	
	1	1							=			DIASTICITY - MUDERATC REACTION	
-		1		1	1	-		1	-			TO NEL	
				į					Ξ		CL		
			1.0		1		1	46	-		64		
		-	-						F	t			
	1							1	-	[1	
-					-		_	48 -	-	1			
		SAS	1 2 2	1.4	59	3		1	Ξ			Lime STONE Rick FRAg. +	
_	4-1.0	1303	22	15	1.9	3	_	1	-1	ŀ		Clay miature	
									Ξ	ł			
		1						50 -	-	h	-		
									Intitu	T			
		50				_			11	E			
-	52.0	150						sz-	-				
	220	55.1				2.3	0		1	-	_		
1	14/6	23.1				6,5	-		1	-	\rightarrow		
									3	F	-	Erry Hard Limestone	
T					- 642			33-	-	F	\rightarrow		
									Ξ	1	-		
									-			Beakow Shalp	
+								54 -	-	T			
								'	Ξ	L		Broken hims store of shale	
+	-						-		-		-	-EWS	
									=	F	_		
T					-		-	55 -	T		-4	GRAY JOST Shale	
-	5.1	65.1				9.0	0		3-	-	-	Cana Lost ?	
1				1			-		Ξ			SEI TO SG.4 GARY SOFT	
								56 -	=		+	Shale - Braken LARGE "10 Fassil AT 55.3 = 56.2	
1	6″x 3	.25 H	SA	•				30-			-		
	HW C	ASING A	OVANCE	n 4"	- L							and the Assessment of	
		arr Da	100 M										

- 22

8	No				1.94	and and a second second second second second second second second second second second second second second se Second second second second second second second second second second second second second second second second s		Sherina de astronom	LOG	0	WER SERVICE COPPORATION EERING LABORATURY F BORING BORING NO. <u>B-10</u> Date SH Type of Boring, SPT 3" Tube Casing used Size DRILLING M	- R												
MP	ANY -		· · · · ·				-				BORING NO. 15-18 DATE SH	EET 4 OF												
0							-		-	-	CARING USE SPT 3 TUSE	CORE												
,	ATION	or Bon	HG.	2 X	2		- 31			1														
NAT	TER LE	VEL								1	BORING BEGUN BORING COMPLETED													
TIN	_									1	GROUND ELEVATION REFERRED T													
) A 1	· £									1	Fist o Bears	0AT												
		l.								1	FIELD PARTY	Rig												
		MPLE	5	TAND	480		RED	OEPTH IN FEET	:2	5	1													
	3 6	:ртн <i>FEE</i> T	PE	NETR	AT 10 N	115	-	1 1N		5		DRILLER												
	11	FEET	A	ESISTA	ANCE	101	3 %			5		NOTES												
-	1180	<u>н то</u>	8	LOW	1 5"	1	2 70	PEEI	3	2														
		1							1															
					1		1-	\$4-	Ξ	-														
_							1			-	56.4 ro 57.0 GARA HARD Lina													
			1		1				-	-	STATE I Charle ward Lime													
							1	57 -	7		STONE W Shale Lows AT													
								1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,																
-		-		_							57.0 - 62.6 - GRAY SOFT SAAK													
		1	1		4						ELCOT When Noted													
_		1	_		-			- 58	3															
		1									- 1													
-	-		-	-	-				E		s.													
	1	1									58.6-58.8 GRAX HARd Lime													
_	-	_	-		_		_	59-			STARLE													
								1 2	=		•													
				-	-		L	1 2	-		59.2-59.4 - Shale w/ Fossil													
									1 1		FRASMENT CORE LOST THIS AREA - ?													
		-		-				60-			CORY LOST THis AREA - ?													
								=			60,0-60, 3 GRAY HAMI WIMS													
-	<u> </u>				1-					-	STOMC .													
					1	1					60.3 - 60.7 SARIE up Fossil													
			+	-	1-	-	-	61-	1		ERAS MUNT.													
			1.1		1	1		=		-														
				1	-		-				61.4-62.6													
								3		-	GRAY HARd Lim- STORE													
		1	1					62 -		-														
									\vdash															
			1	1						-														
								, - E		-	62.6- 65.0													
		1						63			Sany SOFT CIAY Shale													
_		1						, industry	F		, with property													
								E I																
								64 <u>-</u>	Ľ															
								=	E															
-								Ξ	L															
								Ē	L	_	· · ·													
-	-							65-	_			1												
	65.1	700				100	600 70.0	3		-	65.0-65.1 GRAY HARd Limy													
-	100.1	12.P				10.0	70.0	-		-	stone.													
								E	F	_														
4	6"	5.25 H	SA.					46		_														
		ASING /									0													
		CORE R					-	1			×	a de la comercia de la Comercia de la comercia Comercia de la comercia +	_	CASING		. 3'		-				-		0)

OM	PANY	ملتد العبير	بيده مد	de mas	-	22		1	(inite	1	BORING NO. 8-18 DATE	
RO	ECT	• • • •	QC 11	sta e		، - ک	2,11	See the second	71		WER SERVICE COPPORATION EERING LABORA, RY BORING BORING NO. <u>B-18</u> Date Type of Boring, SPT	CORE
к. Н	CATION	-	(G)			- 15	1	A RE I	1.1	I N	CASING USED SIZE DRILLING	NO USED
WA	TER LE	VEL			2		-			ł	BORING BEGUN BORING COMPLETE	0
TH											REPENALD I	10
0 A	TE									1	FIELD PARTY	0.
u a	2 S A	MPLE		TANO-		= *	1 400	OEPTH	10	5		
SAMPLE		EPTH FEET		NETRI Isista		TAL DVC	101	IN FEET	4 4 4	U N		DRILLER
s		N TO		104		10 LE HEC	1%	FEET		5	IDENTIFICATION	NOTES
	1	1	1	1	1	1	: I		-	<u> </u>		
								66 -		-	151. 251- GDAN SOFT - 144	
							1] =			SAL- 15.1- GRAY SOFT CIAS SARI- Except WATER Noted	
_		-	1					1 3			and the second second	
								Ξ				
	1-					1		67 -	×	-		<u> </u>
								3				
	1	1	1	1	1			E I				
		_			1			68 -				
								68 -	_			
-			-	-	-			F I			68.2-68.3- GRAY HARD LimesTone	
					1			E			FOSSIL FRASMENTIN Shole	
-				-	-			69		-	68.9- 69.8	
								E			Shale Series	
	T		1	1				E	T		2/1A/F JEAM	
_		-	<u> </u>	-	-			70-				
		1						Ξ				
_	-	-						-				
		1						Ξ				
								7/	1			
	L							Ξ	Ì		-	
								Ξ	1			
_								72	ł	_		
								-	ł			
-	1								-it	-		
_					10			73 -	Tt.			
								3 =	[
-								Ξ	ŀ	_		
		1.1		- <u>S</u> 1	33			E	ŀ	-		
	1							74	7	-+	73.9 TO 743 Gary Hard Limestone	
								Ē	1			
j=		18	\mathbb{P}_{22}					1	·			
_	75.1	85.1				9.9	61.0	75-	E	_		
×.		1.2	- 0		- V.			E	-	_	•	
	1	1		-				1		-ł	25.4 - 76.3 -GRAY Limpstone w/	
	N 0	- 1° T	163				- Š. I	1		-+	Levers of Clay Shorton	
		3.25 H		-				76	-	+	TELED BEL Con a state	
ă I		CASING A		ER 4							751 TO BS.I GRAY SOPT SHARE Except where noted	
2	NQ	CORE RO	CK	3	100			(#1.14m *1)			PROCEPT WHERE NOTED	

COORD	CT	- BORIN	G 1					H. 16 Ks			WER SERVICE CORPORATION EERING LABORATORY BORING BORING NO. 19 DATES TYPE OF SAMPLES: SPT3" TUBE CASING USEDSIZEDRILLING	HEET 6 OF CORE NUD USED
	ER LEV										BORING BEGUN BORING COMPLETE GROUND ELEVATION REFERRED	
TIM	_											DA
DAT	٤							10			FIELD PARTY	Aig
AMPL E	5 A D E 1 N	HPLE PTH PEET 4 TO	51 PEP 4E		80 7108 90 E	TOTAL LENGTH	R40	DEPTH IN PEET	APH LOG	u s c s	IDENTIFICATION	DRILLER
0 2	1 401	6 TO	-	104	1 1				13	_		l
	1				1			76-			l	1
					1			-				
											176.3 - 77 / Sucy 1-2-2 Lim-	
				i				20			STORE	
								77	+			
_	-		-		-			-		-		
								70			· · · · · · · · · · · · · · · · · · ·	
								78 -			18.1 - 78.3 GRAY Hadd him -	
								79-		X	STORE	
											18.3-78.5 Fossil FRASMUNT	
_				1	1							
											19.2-79 4 GRAY HARI Lime	·
			,ä								STORS	
				1	1						×	
_					<u> </u>]			
					1					-		
		1			1			BI —	1-1		GARY HARd Limestone 81.1-81.3	
	l				<u> </u>			-			,	
									1 F	-		
		1			1			82	1 1			
					<u> </u>			Ē				
										-	1	
			0		-			83-			FUSSI FRASMENT in SHALE 83.0-83.2	
								1				
								-	-			
-					-			81-				
1				п.,	- C				1.1			
863				3			1					
_								85-		•	т	
	85.1	92.4				7.3	24.0					
				- 1				.: E			GRAY HARD BS. 5-85.8 fime	$\mathcal{H}(M)$.
-	6"× .	3.25 H	SA		-			86-		6	STORE 158-05.9 FOISIL FRASMENT IN	A
	HW	CASING A	OVANG	źn 4	•			19			shale	
_	_	CORE RI	008		a –			<u> </u>		-	4 4 4	
		CASING	3	3	• E - }			R		1.4-1	RECONDER	28 A. 1. 8

- 2

- 22

S 12

	CT				_	1.4	AL.	8.1			WER SERVICE CORPORATION ERING LABORATORY BORING BORING NO. <u>A-18</u> Date	SHEET 7
COORDI	NATES			_	_				_		TYPE OF SANPLES: SPT 3"TUBE	CORE
Loca	TION OF	BORING	Q 1							1	CASING USED DRILL BORING BEGUN BORING COMP	ING MUD USED
WATE	R LEVEL									1	GROUND ELEVATION REPEAR	
TIME			_									
UATE										1	FIELD PARTY	F
we	5 A M P	LE	5 7		R Q	7 × 4	AGO	-	Lot		SOIL / ROCK	
MPL	0 E P T 18 F E	гн 11	RE	167841 3:3741	NCE	DYAL	01	1 10	3	U N	IDENTIFICATION	ORIL
SA	5469 0 2 9 7 18 7 2 7 900	то	81		1 0-	유수 공	/0	IN FEET	A A	5	IDENTIFICATION	L UT
				-	-			86-				
								87_				
					<u> </u>			87_			All Sear of Lunestone	
								- 3		-	37.2 11	
								1 3			87.4-87.1, Fussil Frances	
								88 _			87.4-87.1, Fussil Francer w shale	
								=			87.7 - 91.4	
											GRAY HARD hime stone at	
- 1			į. 1					. 3		-	tayons of clay shale	
							3	81-		1		
_								Ξ				
								89	ł	_		
								90	ł	-	•	
								2	t			
								. 3		_		
								91	ł	-		
								11	_	-		
I	1				1	1		. 1	T	İ	91.4 -92.4	İ
								92-	Ľ		SCAY SOFT BIAY SHATE	
								. 1	Ļ	-	/ /	
-+							-	1	7	-+		_
	i								ł	-		
								93				
		_			_	_		miliui		_	STOPPEd Hole 92,4 + Installed Piezometer	
								E		+	Installed Piczamater	
		-+			-+		-		ŀ	-		
					_	-		untun	L		1	
				T	T			Ξ	E			
							_	the second second second second second second second second second second second second second second second se		-		
									F	-		
							-	mhu	F	-		
		_	(+)					-	E			
	5"x 3.2				L				Γ			
	HW CASI			tn 4"	F	-					1 ¹⁶¹	
	WW CAR			3"	-+		\rightarrow			-		1
	SW CAS			6"							RECONDER	

ATE

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

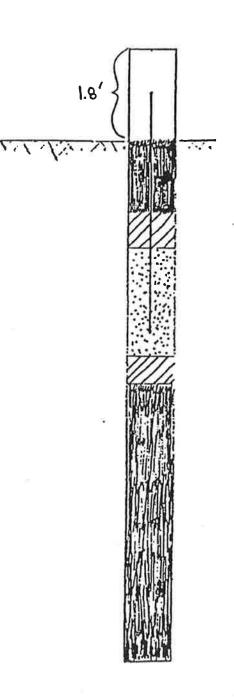
- 6 NO				
•	AEP			
	Zimmer	FGD	Landfill	
	-	6.		
WATER L				
¥				

Mw		
BORING NO. IJB DATE	2-13-80	SHEET 1 or 1
TYPE OF BORING		Ris CME-75
CASING USED	Size	DRILLING MUD USED
BORINE BEEUN		
GAOURO ELEVATION _85	0.5	ACTEAALD TO
<u> </u>		Datu
FILLO PARTY: Smith	- Bumgarn	er

?" PVC rizer pipe

2" PVC :02 well screen

3" steel protector set in grout


Grout from 0 to 31.0 ft.

Bentonite seal from 31.0 to 33.5 ft.

-und from 33.5 to 47.5 ft.

Screen from 35.5 to 45.5 ft.

Bentonite seal from 47.5 to 48.3 ft. Cuttings from 48.3 to 85.0 ft.

stom of boring 85.0 ft.

	о нтА	. E. F	2	-						B-10 BORING NO. II DATE 7-23-BS SHEET 1 TYPE OF BORING RIG CME-75 CASING USED 20 SIZE NW DRILLING MUD USED
OJE	T Z	MM		FG		_		-		CASING USED SIZE NW DRILLING MUD USED
Loca	TION OF	BORING	•							BORING BESUN 7-23-85 BORING COMPLETED 7-2
	IN LEVE					_				
DATE	_				_					FIELD PARTY, Smith - BumerARNER
							_		Т	DESCRIPTION
Ň	SAM			ANDAR ETRATI		TOTAL LENGTH RECOVERY		DEPT	н	SOIL TYPE, COLOR, TEXTURE, CONSISTENCY, SAMPLER DRIVIN
PLE	DEP			ISTAN		L'S S	ELEVATION	IN FEET	-1	BLOWS PER FOOT ON CASING, DEPTHS WASH WATER LOST, O
SAMP	FROM			ws /		R L H		FEE	1	FLUCTUATIONS IN WATER LEVEL, NOTES ON DRILLING EASE.
2	FROM									
								0-	_	ROTARY WASH + NO CORE
								5	-	1
_								1.	-	
									-	
								2	-	
								3.	-	
									-	6 Sec. 1200 PSI 2.0 PUSH TOP 7" MED. BRWN SDY CLAY CS SD SIZE
1	3.0	5.0				1.6		- •	-	NODULES & 35 FRAG
									Ξ	BOTTOM 13" TAN - ORE BEWH SAY CLAY CS
-						1		1 "	Ξ	SIZE DEON NOL & SE FRAG.
								- 6	_	
									Ξ	Couldon I push Ispe
2	6.0	9.0						- 7	-	
									-	
			1.00		1	1		7 °	1	Sandy Clay. Be. moist - Qu
3	8.0	9.5	16	21	33	12		- 9		+ Linde stone soud size matter
										STRONG REACTION - (TUI)
						-		110		(144)
								1	3	
-	1				1			1		
								- 2	-	
					1				-	
\vdash					-	1		۰ ۱	1	Soudy MAY SilT - GRAY-MOIST
4	12.4	14.4	36	28	59.4	10			2	I wing ETONIELS QUARTZ SAND SIZE
۲	1 mars	T								MATCRIAL - STRONG REACTION TO
								- 5	-	(711)
									100	
-				1	1	1		- 6	100	
								- 7	ļ	
		1							01.0	
						-		- •	-	
						1				
1				1-	1	1		7 %	1	Sand y SITY CLAY - GRAY + GRA motthed - Maist - STRANG REAL
5	19.5	21.0	10	15	19	8	'	20	5	TO Nel - (TIL)
-		1	1							

FORM CE-5

うちろう にはない ひんぼうけいがあしてる うちょう ノスティー・アール

e unitida table de este

1000

.

1

ŝ

ł

ţ

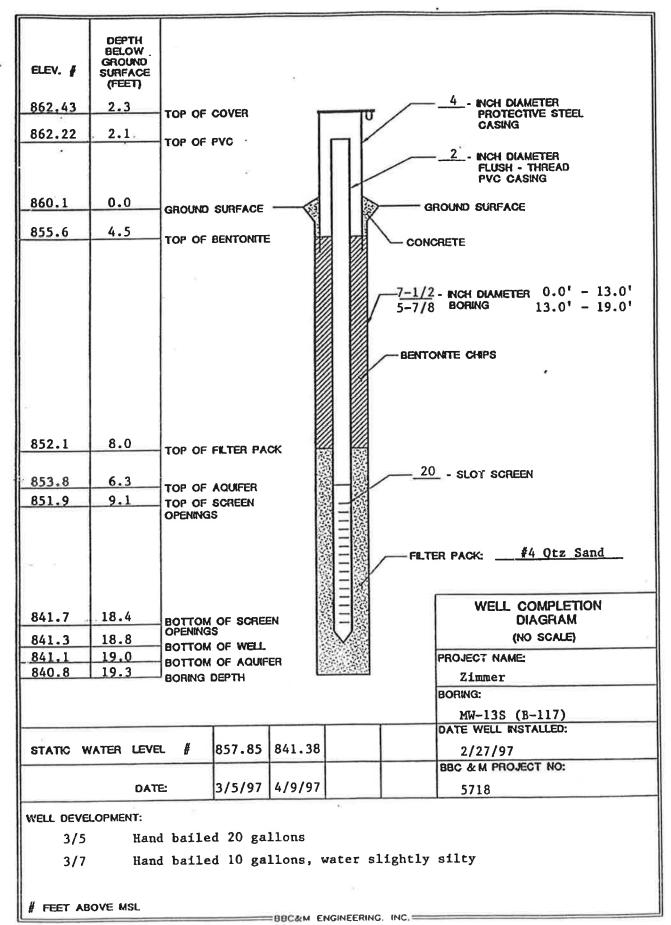
and the second second

.

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

- 65 -

										TYPE OF BORING	R16
			-							CASING USED SIZE	DRILLING MUD USED
Loca	TION OF	BORIN								BORING BESUN BORI	
WATI	ER LEV	n.								GROUND ELEVATION	_ REFERRED TO DATU
Тімі	L									FIELD PAATY:	
DATI				-	_		-		_		
à		1		ANDAR	0	->			Т	DESCRIP	TION
Ň		PLE		ETRAT		1 HE		DEPT	н	SOIL TYPE, COLOR, TEXTURE, CONSIST	ENCY, SAMPLER DRIVING NOTES
5	DEI			ISTAN		TOTAL LENGTH RECOVERY	ELEVATION	IN FEE	- 1	BLOWS PER FOOT ON CASING, DEPTHS	
SAMPL				ws /	6 ¹¹			FEE	1	FLUCTUATIONS IN WATER LEVEL, NOT	S ON PRILLING EASE, ETC.
2	FROM	10		/#3 <i>/</i>	<u> </u>				+		
						1 1					
						1		20	-		
								1.	-		
						1		1 '	-		
								2	-		
								1 -	4	•	
								3	-		
			L 1			1			3		
								4 43	-	CLAY. Blue GRAY- M	nisT. Slight
		24.0		2	1 2 2	1			-	REALTION TO HEL - T	RACE OF SAND
6	24.5	24.0	<u> </u>	46	1	14		1 7	1	Bab Ct In LAM CM	•
								- 6	1		
-	1				1] ີ	Ξ		
						1		1 7	_		
	1								-		
					-			- 8	-		
									-		
								- 9	-	Clay- Blue Gany- n how plasticity- TD material- 8	noist - med to
	lan r	31.0	1.14	11-	11	115	1	20	-	LOW PLASTICITY - TD	ALE OF ORGANIL
7	1242	31.0	1 IF	1.10	1			730	Ξ	material - 8	U
								1 2	-	1	
						E.			1		
	_	-	1	-	-			2	-		
		t	1						-		
_								- 3	-		
									-		
-			1	1	1			1 •		Clay. Blue GREEN .	maist-med To
9	74.0	31.0	12	16	20	16		4 5	5	have plasticity - a	nodenATE REACTING
10		- and								To Hell	
							_	- 6	÷		
	1	1							-		and the second sec
-								- 7			
										-	
-				1	1			• ۱	-	-	
	1	1							2		
F	1	1	501		1			7	-		
9	.39.3	39.1	5%	-				440	-	Drilled in TO ROCK	10 41.0
		1						1			
1			-	-				-			
	1	1	-	1	1	1	1			Emainten	


FORM 18-5

AMERICAN ELECTRIC POWER SERVICE CORPORATION AEP CIVIL ENGINEERING LABORATORY LOG OF BORING

OCATION	or 8ar	_							BORING TYPE OF BORING Ris CASING USED SIZE ORILLING MUD USED BORING BEGUN BORING COMPLETED
	MPLE EPTH FEET		PENEI RESIS	CE	TOTAL LENGTH RECOVERY	ELEVATION RQ D	DEPT IN FEE	тн	DESCRIPTION SOIL TYPE, COLOR, TEXTURE, CONSISTENCY, SAMPLER DRIVING NOTE
41,0	2 43.	7			1.9	٥	40	A	GRAY CLAY Shale
43.	7 50	0			4.3	31%			* +3,7 - 55 Gany Clay Shale of Lammared Laytons of Lime Stone
							\prod		
	0 55	:0			4.8	2.8 %			
						-			55.0 - 66.0
55	.0 43	.7			8.7	21%		6 7 	GRAY CLAY SHALE
							V	9 0 -	Emoincen

12 P A	LN Y	-								BORING BORING NO. I T DATE SHEET 4 OF 4 TYPE OF BORING RIG CASING USED SIZE DRILLING MUD USED
.00.	EA E	(C	BORIN							BORING BESUN BORING COMPLETED GROUND ELEVATION REFERRED TO FIELD PARTY: OAT
SAMPLE No.	1	SAM DEP IN F	TH	PENE	TRAT	ICE	TOTAL LENGTH RECOVERY	ELEVATION RQ D	DEPTH IN FEET	Sold Tipe, Coldm, Teatine, Constantiation, Subject and the
									14 0 1	,

2.3 0 45.7 66.0 66.0- 70.0 GRAY CLAY Shale of L LAYERS OF Limestone min ATEd 60 58 % 4.0 66.0 70.0 7 9 Ar GRAY clay shale 67% 5.0 70.0 75.0 I. GRAY CLA Y SHALE W/ LAMINATED 38 % 750 85.0 10.0 Bolled WATER 7-23-85 7-25-85 MATCH 1 . 9 WATER 11.5 INSTAILED 9 g 0 -Stopped boring 85.0 2" PVS + BAILEd WATER TO 32.0 - 8-1-85 WATER ELEV. 11.0 ENDINEER

- 4 						2			
			AME	RICA	N E	LECT	RIC	PC	WER SERVICE CORPORATION Well 13
REV. 1/87		۳.							EERING LABORATORY
JOB NO	E P		9				LO	GO	FBORING
PROJECT ZIM	men	SIV	220	hn.	- 4	Fil		8	BOAING NO. 3-22 DATE 2-26-87 SHEET 1 OF 3
COORDINATES A	1. 168	10 - 1	£	1973	50				TYPE OF SAMPLES: SPT X 3" TUBE COME X
LOCATION OF S	BORING								CASING USED SIZE DRILLING NUD USED BORING BEGUN 2-26-87 BORING COMPLETED 2-26-87
WATER LEVEL	Day	/							GROUND ELEVATION 259, 88 REFERAND TO
TIME				_				-	DATUM
UATE	1							_	FIELD PARTY T. Smith - BungARNert Rig 75
	. 1 3	-	RD		AGO	OEPT	на		
SAMA SAMA	н (<u>М</u>	TANDA ENETRA Esista Blow	110M	NGT	01	I IN			SOIL / ROCK DRILLERS
UT FROM	70 9	BLOW	/ 6*	1074	70		T	5	IDENTIFICATION NOTES
	1		1						
			-				-	-	
							E		
				7.			annahannahannahannaha		
1 2.0 3	5 4	17	10	17		2 -	-	-	Clarey Silt- Re- br.
		1				1	-		mist
		.					Ŧ	_	
						4-	-	-	
							F		
							TT	-	
						6-	-	-	
2 7.0 7.	5 50	1		2"			E C		WENTHEREd Lime stone
								-	
1		1				8-			
							П		
			Ľ,					-	ANGER ROFUSAL 10.5
i 1		1	i			70 —	munnun		
10.5 1:	5.0	<u>. </u>	li)	3.1	0		rFr.	<u> </u>	
							-		For line Store 1= 7 home
	1					12-	Ē		Ga. hime Store 1 - 2 Long up clay shale hayses
		1						-	
				i		14	TT	_	
		1 1	1	Í		· · ·			
						1		-	
15.0 25	.0			6.8	0		F		Lime store GR. MAX Leng TH
1 1		1 1				16 -	1		Lime store Ge. MAX heng TH
					-		4	-	
						18			
							T,		
		1 1					T	-	
						20-			
6"x 3.2			ŀ						
HW Gash		658 4"	ł	_ <u>×</u>					
NW CAS	NG	3							
SW CAS	ING	6'	· [Recorder

Seale of the sealest

ROJE	ст							_	BORING NO. <u>B-22</u> Type of Samplesi			SHEET Z OF 3
0080	MATES								TYPE OF SAMPLESI	SPT	3" Tuee	CORE
									CASING USED	\$12	E DRILLING	400 USED
-00-7	TION O	BORING	1						BORING BEGUN		BORING COMPLET	20
WATE	RLEVI								GROUND ELEVATION		AEFEAAED	TO
TIME	_											DATU
DATE			_						FIELD PARTY			Rid
	1		STANI PENET RESIST 9LOW		L.			1.2	1			1
	248		PENET	RATION	133	NGU	GEFTA		1 30	IL / RO	CK	DRILLER'S
1.6		EET	RESIST	TANCE	PIC NO	0/	IN			NTIFICAT	FIGN	NOTES
25				1.4*	PLC PLC	10	PEET					
	PROM	1.0	31.0 %		-	-			1			
									1			1
_				_			20	: -	1			
								1 H				
_												
					-		22-					
					1	I						
			1	1			24		1			
							24-					
				1								
	25 0	35.0			9.5	0	26		GRAY Lime	stome	ul hayers	(<u> </u>
	az.se				1 1				OF CLAY SH	iale - 1	MAX LOWEN]
									ar hime en	ac . 25	+ + / ++ +	1
					1		26		Shale . 3			1
				1					I DATE IS			
-					i i							1
						1	·	-				1
					1		28-	-	2			1
							-	-				1
						-	-	-				
							-					
		1		_			Jo	-				
					1 1	1		. –				
		1			1 1		-	-				<u>.</u>
		1			1 1		1 3	i 🖵	1			1
							32					
1		1 1			1 1				1			1
		r ji	1	1	1 3		34			and the state of the		N
1		1	1		i 1				1			Е
					<u>E</u>		34 —					
			1				- T		1			
							=		1			
		1					-		1			1
Į	350	450			8.2	12	3		CIPY SHAL	· Gra w	1 havens	1
_	170	1 1		1	1 1		36		Clay Shale OF Lime SI DF Clay SH STORE, 2	inge ?	MAY LOWETH	1
							3		DE CIAL SA	10 7	Line	1
-				-					LCE 11 2	111111	ALM.T.	
							=		plane			
_		<u> </u>		_			38					1
							1					
				1	<u> </u>		_					1
1					1						1	
							40					
1	6"x :	3.25 H	SA				- <u> </u>		1			
1			OVANCER						1			

RECONDER

3" 6"

.

NW CASING

SW CASING

AMERICAN ELECTRIC POWER SERVICE COMPORATION

00801	NATES	DF BORING								TYRE OF SAMPLES	SPT 3	TUBE	SHEET <u>3</u> OF <u>3</u>
LJCAT WATE TIME OATE	NON C	P BORING	_							THE OF GROUPERAT			
WATE: TIME DATE	RLEV									CASING USED	SIZE	DAILLING	HUD USED
TINE		/EL						-	1	BORING BEGUN		UNG COMPLETI	()
OATE				_						GROUND ELEVATION			
				_				-	1	FIELD PARTY		4	DATU
SANPLE Number	541								1				HIG
NUMBER		APLE	STAN	0440	1 - 2	RCD	DEPTH	à	[]				i
Plun I		ртн	PENET	RATION	LAL V LAL	-	IN	-	u	50	IL / ROCK		ORILLER'S
		FEET	RESIS	TANCE	101	1%	OEPTH IN PEET	14	2	IDE	TIFICATION		NOTES
	FRON		81.01	1		1		u					A
							4.		i				4
		1			1.1	1							*
					_		2		1				1
			2				3						!
							42						1
- 1							48 48 48 20 20						
							-						
							3						
-+					1-	-	44		\vdash		and provide the second second second		
	15.0	50.5	1.1		5.5	11	=						
1	14.1.2						E			GRAY Lime	STORE W/	LANCES	1
							46-3		1.	OF CLAX Shi	Ale- MAR	LemeTH	1
		1		1	1		1		1	OF Lime STO	ne . 2 - c.	12-1	10 1
					1		1		1	Shale . 7			1
1		f 1			1		E		1				1
					-		48		<u> </u>				1
			i		1								1
					-		1						
				1			1		1				
	_	i i	1		1		so		E				
i		1 1	1					-		Stupped H	01- 50.5	= =	
ľ		1 1	1	1	1		ului	1	1	201122			,
				!	·		e	1		+ INSTALLE d	QIEZOME	ten	
1				1	1 1		Ŧ						
1										LATER Leve	1 45,5 F		
1					1		- T						
	_					_		ł		16 HES LAT	CR CIO		
							1						
1			i	1	1		. III	ł	1				
			1					Ì	1				
ł			1		1 1		Ē	ľ					
	_						E	[4				£
1			1					L					
	_				<u> </u>			Ļ					
							TT I	ŀ				1	
							11	ł					
					l Í		Ξ	ŀ					
_	c ^H _ 3	5.25 HS		_	-			ł					
		ASING AC		4 "									
		SASING AL					1						
	_	CASING		3."					-				

0 - 13

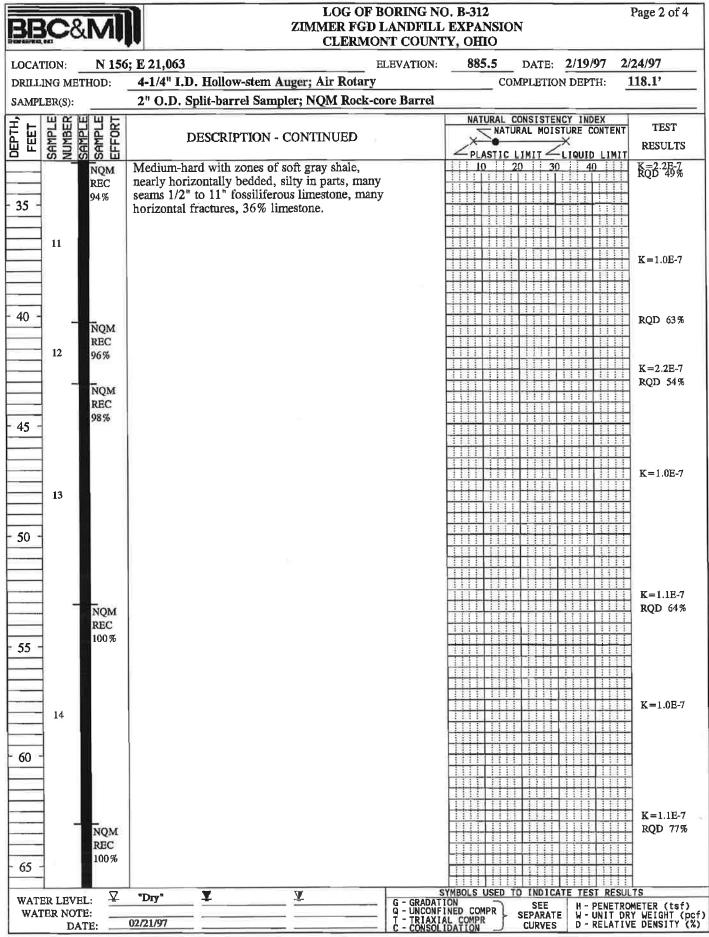
-2

٠

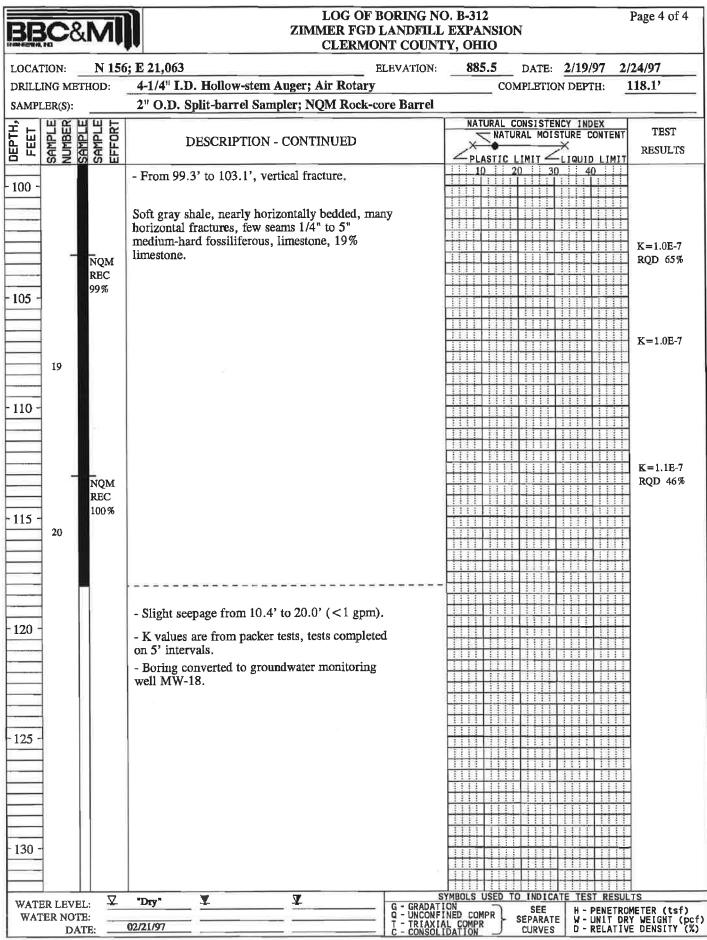
			/12/07
	1; E 15,918 ELEVATION:		/13/97
RILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH:	68.5'
MPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
FEET SAMPLE NUMBER SAMPLE SAMPLE EFFORT	DESCRIPTION	NATURAL CONSISTENCY INDEX	RESULTS
1 1,3,	FILL: Medium-stiff to very-stiff brown with gray lean clay with sand (CL).		H=0.6-3.4
2A - 5 /2 3			H=0.6-1.2
2B ⁵ / ₅ / ₆	Very-stiff to hard brown sandy lean clay, few desiccation planes with oxidation, (CL).		H=3.7-4.5
$5 - 3 = \frac{8}{12} \frac{12}{12} \frac{11}{12}$			H=4.5+
			H=4.5+
$\begin{array}{c} 4A \\ 4B \\ 5 \end{array} - \frac{7}{7} \frac{12}{12} \\ 7 \frac{11}{12} \\ 7 \frac{110}{$	Very-stiff to hard gray lean clay with sand, few cobbles.		H=4.5+
$\frac{5}{0} - \frac{5}{6A} - \frac{8}{11^{32}} - \frac{8}{11^{32}} - \frac{1}{11^{32}}			H=2.4-4.5
6B ¹ 12 ₁	Medium-dense brown poorly graded sand with gravel, (SP-SC). Medium-dense elastic silt, (MH).		H=3.2-4.5
∇_{7} $\gamma_{10}^{/1413}$	Very-stiff to hard gray silty clay, few seams $(<1/4")$ silt to fine sand, (CL-ML).	****	H=3.1-4.4
5 - 8 5/12	- At 12.7', 1" seam of fine to coarse sand. Very-stiff to hard gray lean clay with sand,		H=2.6-4.5
$-7/6^{6}$	occasional desiccation plane, (CL).		- H=4.5+
			H=2.1-4.5
$\frac{10B}{10B}$ $\frac{103}{148}$	Very-soft gray with brown shale, nearly horizontally bedded, similar to soil.		H=4.5+ RQD 0%
11 NQM REC 38%	Very-soft gray shale, nearly horizontally bedded, many seams 1/4" to 5" of medium-hard		
	fossiliferous limestone, numerous horizontal fractures, partly similar to soil, 26% limestone.		RQD 109
NQM REC			K=9.4E-3
22 %			
- NQM			RQD 0% K=3.2E-3
0 - 13 REC 29%			
14 REC			RQD 219
- 58% NQM REC			RQD 449 K=3.3E-3
15 - REC 84%	Soft gray with streaks of brown shale, nearly horizontally bedded, horizontal fractures, few seams 1/4" to 3" medium-hard fossiliferous limestone, 15% limestone.		
WATER LEVEL: ¥		SYMBOLS USED TO INDICATE TEST RESU	
WATER LEVEL:	G - GRADAT	IND COMPR SEE H - PENETR AL COMPR SEPARATE W - UNIT D	OMETER (tsf RY WEIGHT (

. C.

BC&M	LOG OF BORING N ZIMMER FGD LANDFIL CLERMONT COUN	L EXPANSION	Page 2 of 2
DCATION: S 1,46	1; E 15,918 ELEVATION	823.5 DATE: 2/11/97 2/	/13/97
RILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH:	68.5'
MPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
• • • • • • • • • • • • • • • • • • • •		NATURAL CONSISTENCY INDEX	
FEET SAMPLE NUMBER SAMPLE SAMPLE EFFORT		NATURAL MOISTURE CONTENT	TEST
FEET	DESCRIPTION - CONTINUED	×-•×	RESULTS
	TT	PLASTIC LIMIT - LIQUID LIMIT	
NQM	Very-soft gray with yellow-brown shale, nearly horizontally bedded, few thin seams 1/4" to 2"		RQD 0%
0 - 16 REC	medium-hard fossiliferous limestone, many		K=3.9E-3
45%	horizontal fractures.		
			RQD 0%
17 REC			
17 %			RQD 0%
5 - 18 NQM			K=3.3E-3
REC			ROD 0%
32 %			KQD U70
19 NQM	- From 46.6' to 47.1', vertical fracture.		
	Soft gray shale, nearly horizontally bedded, many		DOD 00 7
NQM	horizontal fractures, few seams 1/2" to 2", medium-hard gray fossiliferous limestone, 31%		RQD 32% K=2.6E-3
	limestone.		K=2.0E-3
50 - 76%	- From 50.3' to 50.8', vertical fracture.		
20	- From 50.3' to 51.3', limestone.		
NQM	۵. 		RQD 72%
REC			K=5.9E-4
55 - 100%			
21	- From 55.9' to 57.2', limestone.		
	- 11011 55.9 to 57.2, intestone.		
			ROD 78%
NQM			
50 - REC			
99%			K=2.0E-5
	Medium-hard gray limestone, nearly horizontally		-
	bedded, fossiliferous, many horizontal fractures,		1
	many seams 1/4" to 1.5' shale, 43% shale.		K=1.5E-3
22			K-1.50-5
55 -			1
JJ			-
			-
			1
			-
	- Slight seepage from 10.1' to 10.9'.		i i
70 -	- Seepage at 12.7'.		1
	- Encountered water from 20.7' to 34.5' (3-5		1
	gpm).		1
	- Encountered water from 38.0' to 42.3'.		1
	- K values from packer tests, tests completed on		
	5' intervals.		-
75 -	- Boring converted to groundwater monitoring		1
	well MW-16D.		-
			1
WATER LEVEL: V	13.1 🗶 🖳 G - GRADA	SYMBOLS USED TO INDICATE TEST RESUL	
WATER NOTE:	Q - UNCON	FINED COMPR L DEDADATE LIL UNIT DO	METER (tsf Y WEIGHT (
DATE:	02/13/97 C - CONSC	CIAL COMPR J SEPARATE W- ONIT DR	E DENSITY

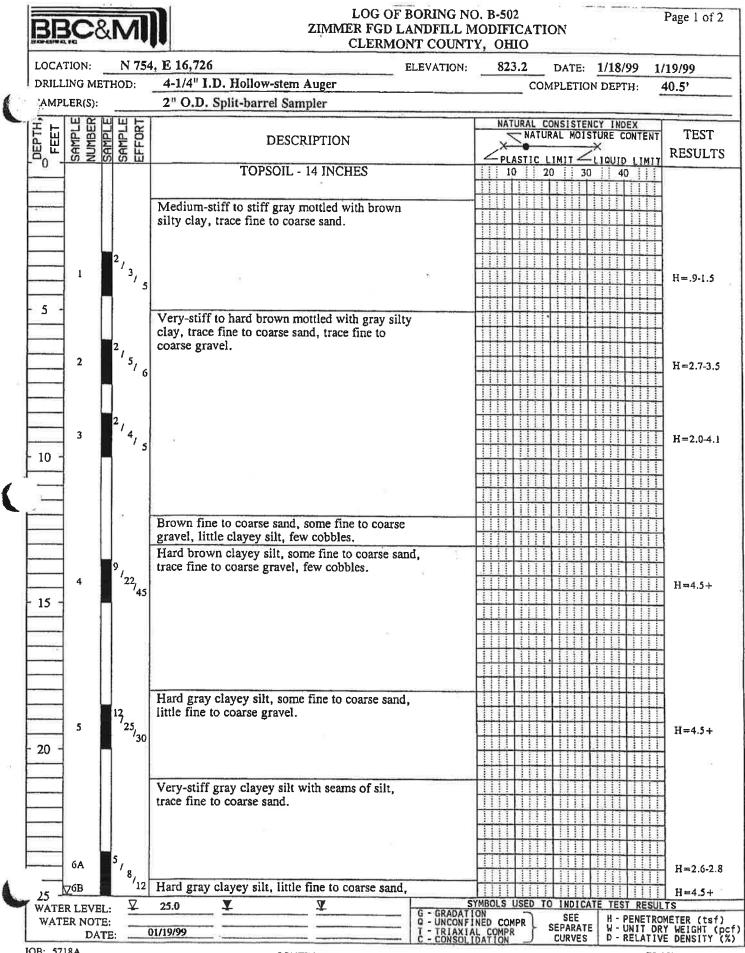

ELEV. #	DEPTH BELOW GROUND SURFACE (FEET)			÷			ас. Э
825.59	2.1	TOP OF	COVER				-4- NCH DIAMETER PROTECTIVE STEEL
825.35	1.9	TOP OF	PVC				CASING
							- <u>2</u> - INCH DIAMETER FLUSH - THREAD FVC CASING
823.5	0.0	GROUND	SURFACE) G	ROUND SURFACE
819.0	4.5	TOP OF	BENTONITE	=		CON	RETE
							⁸ INCH DIAMETER BORING DNITE CHIPS
	56 左						
801.3	22.2	TOP OF	FILTER PA	ск			
804.9	18.6	TOP OF	aquifer	101		20	- SLOT SCREEN
801.3	22.2	TOP OF OPENING	SCREEN			FILTE	ER PACK:#4 Qtz Sand
794.1	29.4	BOTTOM	OF SCREI	EN			WELL COMPLETION DIAGRAM
793.5	30.0	OPENING	S OF WELL	2			(NO SCALE)
776.2	47.3		OF WELL				PROJECT NAME:
755.0	68.5	BORING		K			Zimmer
-		•			ar of		BORING:
Bottom S	Seal (Bent	tonite	Chips)	31./' -	35.0'	1	MW-16D (B-109) DATE WELL INSTALLED:
STATIC W	ATER LEVE	L #	812.29	812.42	811.54		2/13/97
		_	2/1//07	2/7/07	1 10 107		BBC & M PROJECT NO:
WELL DEVEL 2/19			2/14/97 d 20 gai	3/7/97 11ons	4/9/97		5718
3/7	Hand	i baile	d 15 ga	llons, v	water sl	lightly	silty
# FEET AB	OVE MSL						

ELEV. 🛔	DEPTH BELOW GROUND SURFACE (FEET)						3
887.61	2.1	TOP OF	COVER	T		J /	NCH DIAMETER PROTECTIVE STEEL
887.37	1.9	TOP OF	PVC			/	CASING
	_					/	- <u>2</u> - INCH DIÀMETER FLUSH - THREAD PVC CASING
885.5	0.0	GROUND	SURFACE	$\neg \langle$		a	ROUND SURFACE
881.0	4.5	TOP OF	BENTONITI	E		CON	CRETE
						5-7/3	8- INCH DIAMETER BORING
						BENTC	DNITE CHIPS
875.1	10.4	TOP OF	FILTER PA	ск			
877.1	8.4	TOP OF	AQUIFER	S	8X		0 - SLOT SCREEN
875.1	10.4	TOP OF OPENING				FLTI	ER PACK:44 Qtz Sand
866.0	19.5	BOTTOM	OF SCREI	EN			WELL COMPLETION DIAGRAM
865.4	20.1	OPENING	S	2	\mathbf{V}		(NO SCALE)
865.5	20.0		OF WELL				PROJECT NAME:
766.7	118.8	BORING I		8	449 B B B B B B B B B B B B B B B B B B		Zimmer
D-64 0	1 /D+	anita (objec) 7	0 71 -	2/ 01		BORING:
BOTTOM S	eal (Bent	onite (mips) 2	1	24.0		MW-18 (B112) DATE WELL INSTALLED:
STATIC W	ATER LEVE	L #	877.61	876.20			2/24/97
	DATE	2	2/26/97	4/9/97			BBC & M PROJECT NO: 5718
WELL DEVEL 2/26			L	lons, ne	arly d	ry	
3/6	Hand	bailed	1 5 gall	lons, ne	arly d	ry, wate	r silty
FEET AB	OVE MSL					IG. INC.	PLATE 35


10

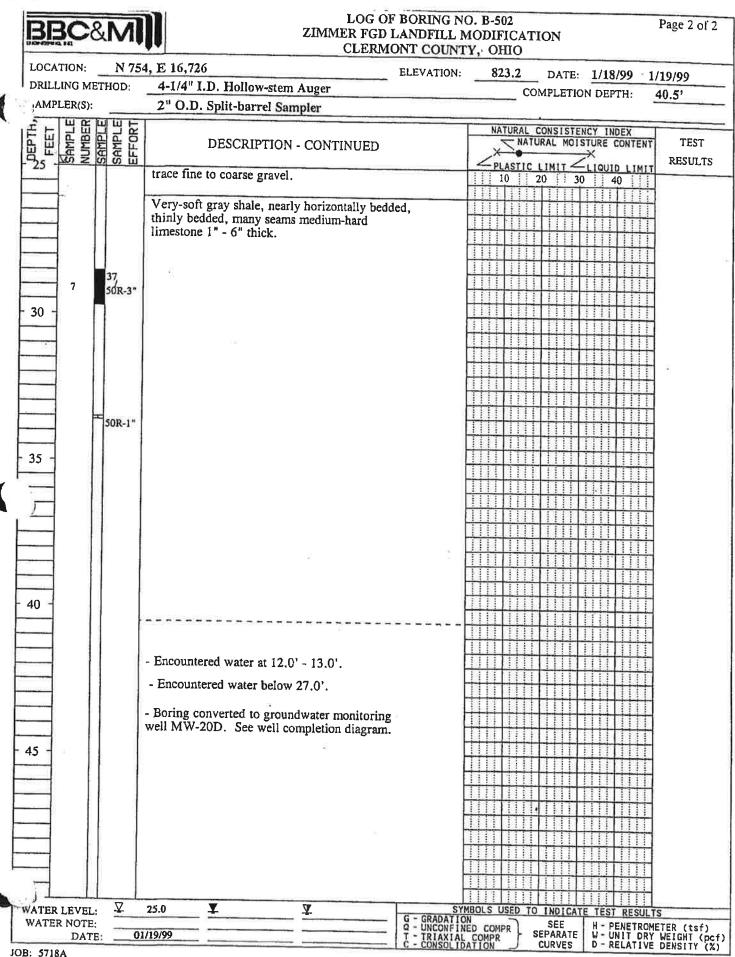
BBC&M	LOG OF BORING N ZIMMER FGD LANDFILL CLERMONT COUNT	L EXPANSION	Page 1 of 4
LOCATION: N 156	E 21,063 ELEVATION:	885.5 DATE: 2/19/97 2/2	24/97
DRILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH: 1	18.1'
SAMPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
		NATURAL CONSISTENCY INDEX	
DEPTH, FEET SAMPLE NUMBER SAMPLE SAMPLE FFFORT	DESCRIPTION	NATURAL MOISTURE CONTENT	TEST RESULTS
	TODOOL 10 INCLES	C PLASTIC LIMIT CLIQUID LIMIT	
	TOPSOIL - 10 INCHES		H=0.8-1.6
$\frac{1}{1} \frac{1}{2} \frac{2}{2}$	Medium-stiff to stiff brown lean clay, (CL).		H=0.8-1.0
3,	Very-stiff to hard brown mottled gray fat clay,	╺ <mark>┥┼┇┊┝┨┊┼╡┊┥╡┊┊┊╷┥┊┊┊╎╷╴┊╴</mark>	
2 ³ / _{3/6}	(CH).		H=2.3-4.5+
/8			
5			
-5-3 $-6/7$			H=2.3-3.6
/10 /			
4			
4 ¹³ / ₁₁			H = 2.4 - 3.4
			H=3.2-3.6
5A 15	Very-soft brown shale, nearly horizontally		
5B 29	bedded, many seams 1/2" to 1" medium-hard		H = 2.7 - 4.5 +
5A 15/1 5B 29, 5B 29, 50.4 ³ R	gray limestone, partly similar to soil.		H=4.5+
050-5"R -	Soft to medium-hard gray with streaks of brown		RQD 24%
NQM	interbedded shale and limestone, nearly		KQD 2470
7 REC	horizontally bedded, many horizontal fractures,		
76%	limestone beds 1/2" to 6", shale beds 1/4" to 8",		
- NQM	44% limestone.		RQD 44%
REC			
94%			
- 15 -			K=1.3E-4
8			
			YZ (05) (
			K=6.8E-5 ROD 54%
NQM			KQD J470
REC			
- 20 -	Medium-hard with zones of soft gray shale,	╶┝╦╈╦╗╋╪╋╪╪╋╪╪╋╪╪╋╧╋╧╋	
9	nearly horizontally bedded, silty in parts, many		
	seams 1/2" to 11" fossiliferous limestone, many		
	horizontal fractures, 36% limestone.		
			K=2.2E-7
NQM			RQD 81%
REC			
- 25 -			
<i>L</i> J			
			K=5.2E-7
10			
- 30 -			
	· · · · · · ·	SYMBOLS USED TO INDICATE TEST RESUL	TS
WATER LEVEL:	"DTy" 4 G - GRADAT	ION SEE H - PENETRON	METER (tsf)
WATER NOTE:	02/21/97 Q - UNCONF	AL COMPR - SEPARATE W- UNIT DR	WEIGHT (pcf DENSITY (%)
DATE:			ATE 1

- 24



BBC&MI	LOG OF BORING N ZIMMER FGD LANDFILI CLERMONT COUNT	L EXPANSION	Page 3 of 4
LOCATION: N 156	; E 21,063 ELEVATION:	885.5 DATE: 2/19/97 2	/24/97
DRILLING METHOD:	4-1/4" I.D. Hollow-stem Auger; Air Rotary	COMPLETION DEPTH:	118.1'
SAMPLER(S):	2" O.D. Split-barrel Sampler; NQM Rock-core Barrel		
DEPTH, FEET SAMPLE NUMBER NUMBER SAMPLE SAMPLE EFFORT	DESCRIPTION - CONTINUED	NATURAL CONSISTENCY INDEX	TEST RESULTS
	Medium-hard with zones of soft gray shale, nearly horizontally bedded, silty in parts, many seams 1/2" to 11" fossiliferous limestone, many horizontal fractures, 36% limestone.	PLASTIC LIMIT LIQUID LIMIT 10 20 30 40 10 20 30 40	K=1.0E-7
70 -	Medium-hard gray limestone, nearly horizontally bedded, fossiliferous, many horizontal fractures, numerous 1/8" to 1/2" shale partings, few seams 2" to 6" of soft shale.		K=3.2E-7
NQM REC 99%			RQD 49%
16 80 -	Soft to medium-hard gray interbedded shale and fossiliferous, limestone, nearly horizontally bedded, many horizontal fractures, shale beds 1/4" to 8", limestone beds 1/2" to 3", 52% shale.		K=1.0E-7
NQM REC 100%			K=1.1E-7 RQD 51%
90 -	Soft gray shale, nearly horizontally bedded, many horizontal fractures, few seams 1/4" to 5" medium-hard fossiliferous, limestone, 19% limestone.		K=4.2E-7
NQM REC 88 %	- From 95.3' to 95.6', vertical fracture.		K=5.4E-7 RQD 46%
	- From 97.6' to 98.6', vertical fracture.	WMBOLS USED TO INDICATE TEST RESUL	K=1.0E-7
WATER LEVEL: $\underline{-}$ WATER NOTE:	G - GRADAT		METER (tsf)
DATE;	12/21/97 T - TRIAXI	AL COMPR DATION CURVES D - RELATIV	Y WEIGHT (pcf E DENSITY (%)

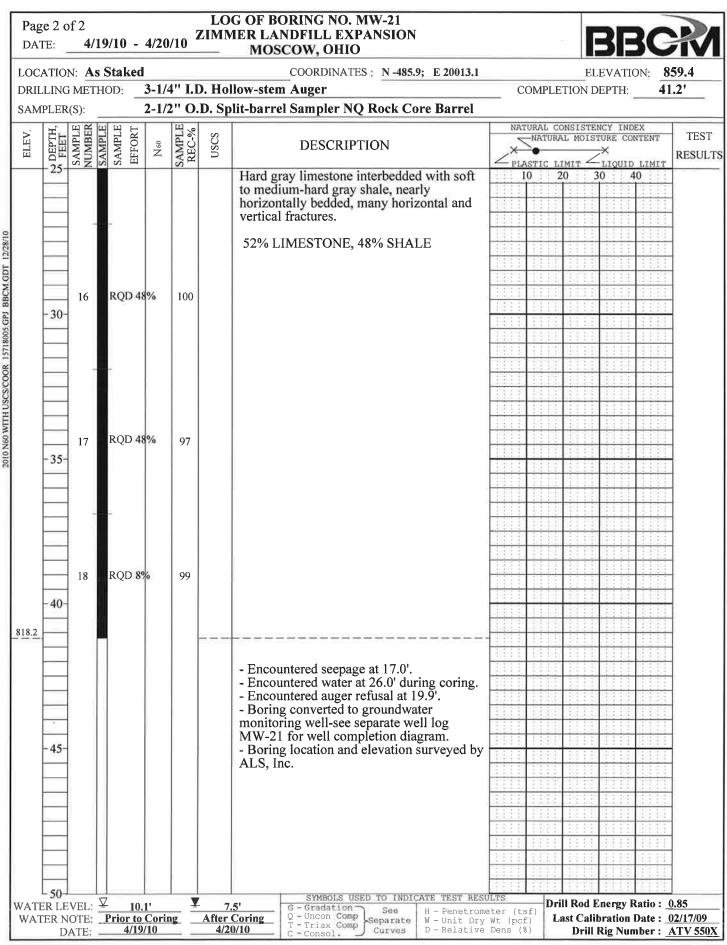
ELEV. #	DEPTH BELOW GROUND SURFACE (FEET)						
887.61	2.1	TOP OF	COVER	1	T	ਗ਼ ∕	- <u>4</u> - INCH DIAMETER PROTECTIVE STEEL
887.37	1.9	TOP OF	PVC			/	CASING
							- <u>2</u> - INCH DIAMETER FLUSH - THREAD PVC CASING
885.5	0.0	GROUND	SURFACE	-		>	BROUND SURFACE
881.0	4.5	TOP OF	BENTONITE	=			CRETE
						<u>5-7/</u>	8- INCH DIAMETER BORING
						BENT	ONITE CHIPS
875.1	10.4	TOP OF	Filter Pa	ск			
877.1	8.4	TOP OF	AQUIFER			2	10 - SLOT SCREEN
875.1	10.4	OPENING				FILT	ER PACK:#4 Qtz Sand
866.0	19.5	BOTTOM	OF SCREE	EN			WELL COMPLETION DIAGRAM
865.4	20.1	OPENING			\mathbf{V}		(NO SCALE)
865.5	20.0		OF AQUIF			•	PROJECT NAME:
766.7	118.8	BORING	DEPTH		1.1.1		Zimmer
Bottom S	eal (Bent	onite (Chine) 2	0 7' -	24.01		BORING:
Doccom 5	Car (Deff						MW-18 (B112) DATE WELL INSTALLED:
STATIC W	ATER LEVE	L #	877.61	876.20			2/24/97
							BBC & M PROJECT NO:
	DAT	E:	2/26/97	4/9/97			5718
WELL DEVE 2/26 3/6	Hand		1 7 gall 1 5 gall		_	lry lry, wate	er silty
# FEET AB	OVE MSL					NG. INC.	

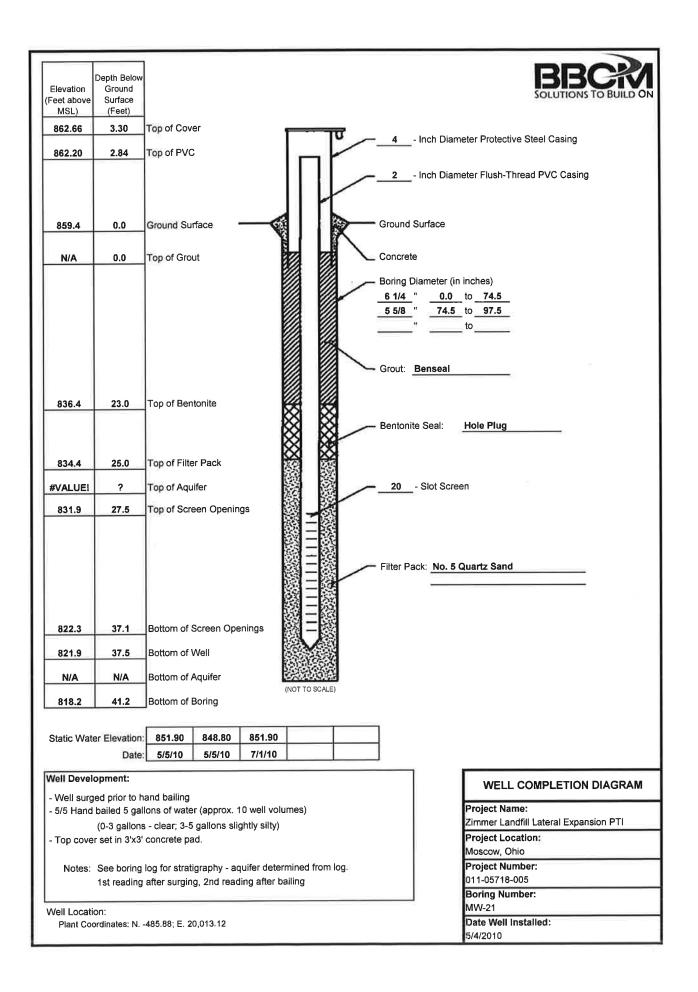

÷.

JOB: 5718A

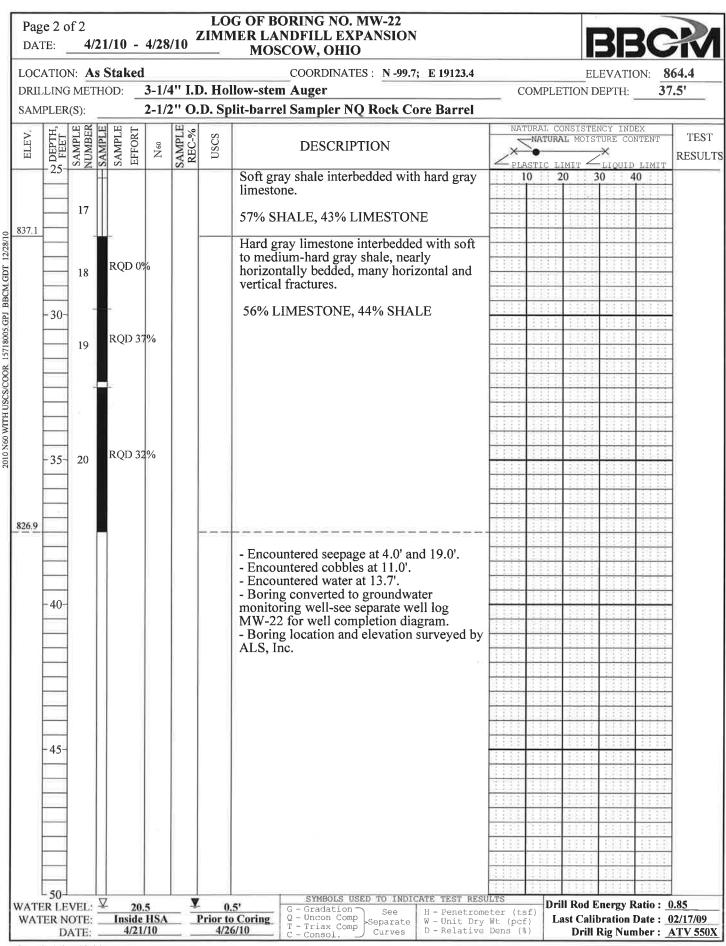
-CONTINUED-

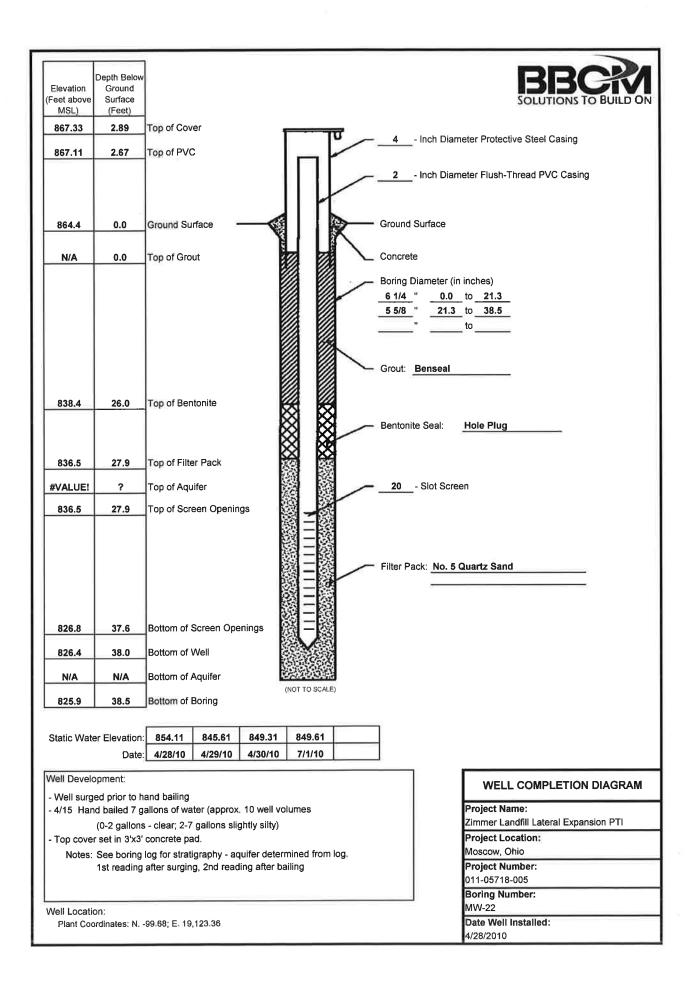
PLATE

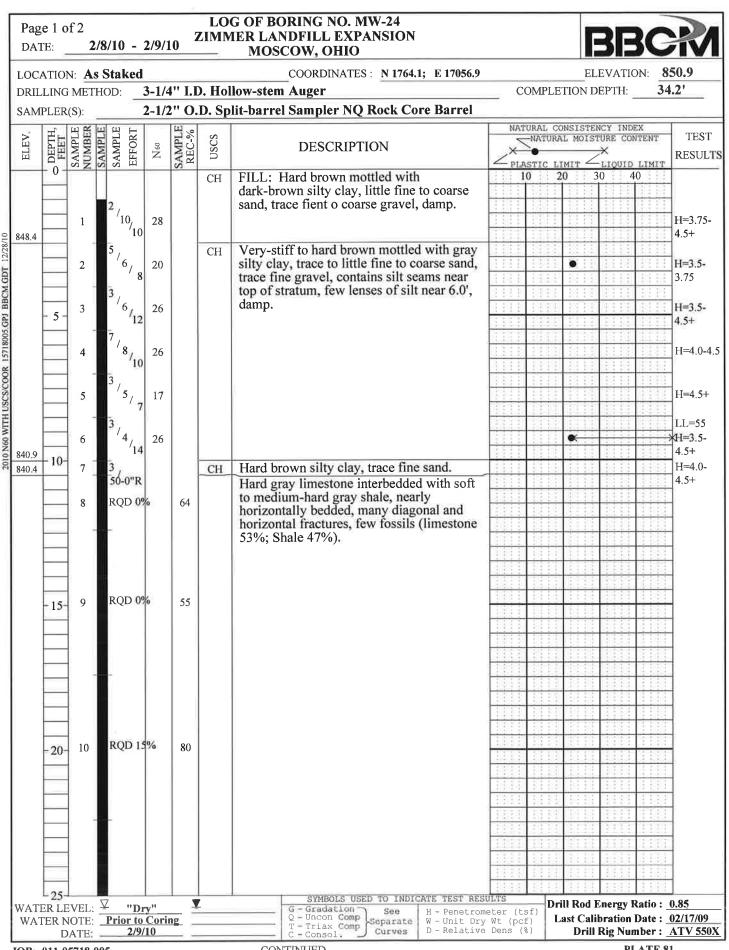



PLATE

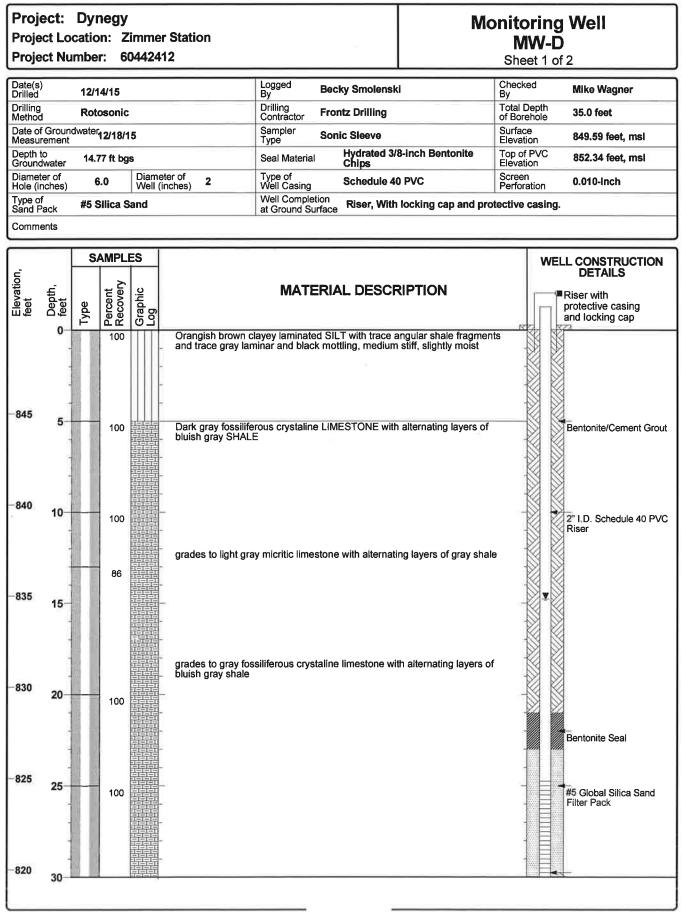
DAT	-		9/10 - Stake			-	MOS	COW, OHIO COORDINATES : N -485.9	; E 20013.1			EL	EVATIO	DN: 8	59.4
		METH			4" I.I). Hol	low-sten	-	,	СС	OMPLE	TION D	EPTH:	41	.2'
SAME	PLER((S):	-	2-1/2	2" O.	D. Sp	lit-barre	l Sampler NQ Rock Co	re Barrel						
ELEV	DEPTH, FEET	SAMPLE	SAMPLE	N60	SAMPLE REC-%	USCS		DESCRIPTION					URE CON	TENT	TEST
_	-0-	NS N	S/S		S/R			TOPSOIL - 11 INCH	25	Z PLA	STIC LI	<u>іміт</u> — 3	LIQUID	LIMIT 0	
58,4								TOPSOIL - IT INCIN	00						
		1	¹ /1/	3	87	СН	Stiff br	own mottled with gray sine to coarse sand, trace fin	lty clay, ne gravel,						H=1.5-
İ				1			few roc	ts, moist.							1.75
56.4							C4:664-		with anou	3.1.1.1				1111	
	-		Р			CH	and ora	very-stiff brown mottled nge-brown silty clay, sor	ne fine to		1111			1111	
		2			67		coarse	sand, trace fine gravel, co	bbles near	8833	88	1993	13.13	3 7 5 3	H=2.75
	- 5 -		-				bottom	of stratum, damp.		1911	1 1 1 1	1212	13.13	1111	-
		3	³ / ₅ /	13	60						111				H=2.75
		3	51	4	00									111	3.5
		-	5								200	10.13	1411	3 543	1
		4	^{' 8} / ₂	47	73					431 F	33 12	1111	1111		H=2.0-
		-	12	5							101 101				
		5	¹⁷ 11,		67										H=1.25
49 9			50-3"	R							8.8				
	- 10-		46			CH	Very-st	iff to hard brown mottled	l with gray	1.1.2	1111	1211	1111	1 23 4	1
		6	'17 _{/2}	5 60	73		silty cla	ay, little fine to coarse san	and, trace		×		×	10101 11101	H=3.1 G
			22						umpi				1121	1111	
1		7	⁷ 17/1	40	73						913		313		H=4.5
j		-	'1	1											
		8	⁴ / ₅ ,		100							×			LL=68 *H=3.5-
		Ů	50-5"	R	100										
1		1	12,									1211	1111	1111	
	- 15-	9	¹² / _{32/4}	102	53										H=4.5
43,9		10 -	50-3"		33		Grov fi	ne to coarse gravel (lime	stone			110014			-
		Ň	0.0-5	`			fragme	nts), estimated medium t	o hard gray						-
							limesto	ne interbedded with soft	to]
		11	50-3"	۲	100		mediur	n-hard gray shale.					1111		-
													1111		
		12	50-2"	2	50								1111		1
39.5	-20-	13	50-6"]	<	100		Hord a	ray limestone interbedde	with soft	1111		1 1			-
								ium-hard gray shale, near		1111					
		14	RQD	17%	100		horizor	stally bedded, many horiz	ontal and	1111	1111	1111	1 5 5 5		1
		_	_				vertica	fractures.		1111	1333	3111	1191	3 84 1	
							52% L	IMESTONE, 48% SHAI	LE	111	111	1111		111	-
		15	RQD	8%	47					1111	1111			1111 1111	-
	\vdash									1111	1111				1
										14.14	1111	11 143	1111	3111	1
	25							SYMBOLS USED TO INDIC	AND NEON DEA	11 TC	3333	1.113	3 33 1	8383	
	ERLE	VEL	∇ 1	0.1'		. 7	.5'	G - Gradation See	H - Penetrome		Dr	ill Rod l	Energy l	Ratio : _	0.85


- 81

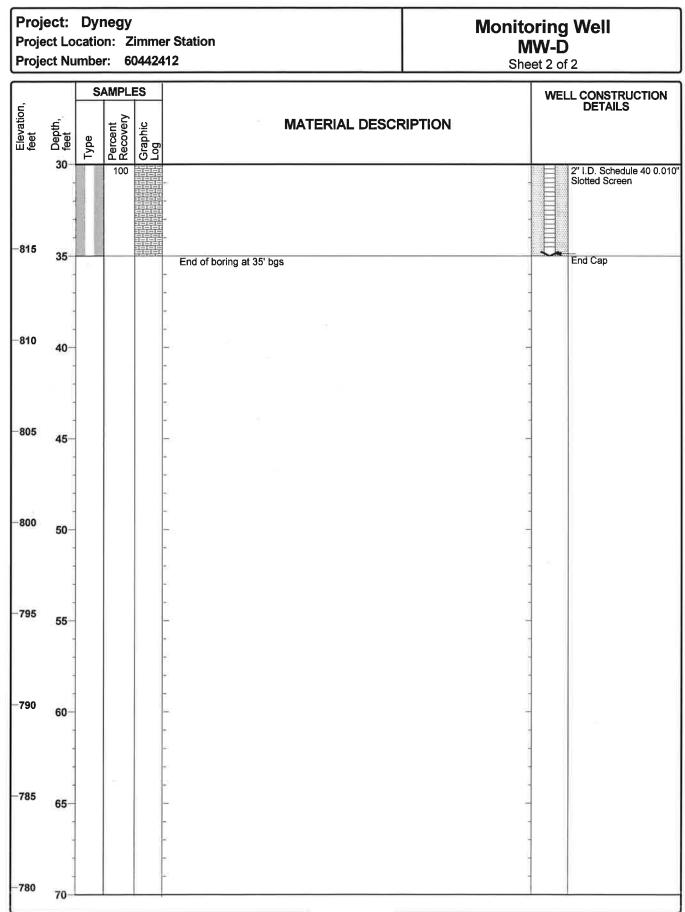

- C. I



LOCA	ATIO	V: As	St					COORDINATES : N -99.7; E 19123.4				EVATIO	-	64.4
DRIL	LING	METI	IOI					low-stem Auger	C	OMPLE	ETION D	EPTH:	37	'.5'
SAM	PLER		_		_		D. Sp	lit-barrel Sampler NQ Rock Core Barrel						
ELEV	DEPTH, FEET	SAMPLE	SAMPLE	SAMPLE EFFORT	N60	SAMPLE REC-%	USCS	DESCRIPTION			AL MOIST		NTENT	TES RESUI
	- 0 -	2				0.1		TOPSOIL - 13 INCHES	1	0	20 3		0	
63.3		1	3	[/] 4/ 0	9	47	СН	Stiff to very-stiff brown mottled with gray silty clay, trace to little fine to coarse sand,						H=1.0
		2	3	′2 ′ ₃	10	53		trace fine gravel, few roots near bottom of stratum, damp.			×9-			LL=65 H=2.25
50,4		-	1	4			CL	Very-stiff to hard brown mottled with gray		1311 1118				2.5 G
	- 5 -	3 -	2	^{′2} ′3	7	67		silty clay, some fine to coarse sand, trace fine gravel, damp,						H=2.0
		4		′5 _{/9}	20	73								H=3.0
		5		¹ 6 _{/14}	28	100					•			H=3.0- 3.25
	- 10-		Т											
53.4		6		Р 4			CL	Hard brown mottled with gray silty clay,						
		8	5	⁷ 26, 50-5"R		100	CL	some fine to coarse sand, trace fine gravel, numerous cobbles, damp.						H=4.5-
		9	5	⁷ 35 50-3"R		80				×	×			H=4.5
	- 15-	10	5	0-2"R		100								
		11	3: 5	2 0-4"R		20								
17.4		12	1. 5	5 0-5"R		36	CL	Hard gray silty clay, some fine to coarse sand, trace fine gravel, numerous cobbles, damp.						
		13		9 /43 50-2"R		79								
43.1	- 20-	₽14	3	4 0-3"R		67								
		15	R	QD 09	ó			Soft gray shale interbedded with hard gray limestone.						
		16						57% SHALE, 43% LIMESTONE						
	- 25- ER LE	VEL	∏ ⊽	20.:	5		0	5' SYMBOLS USED TO INDICATE TEST RES G - Gradation See H - Penetrom			rill Rod E	Cnergy I	Ratio : _	0.85

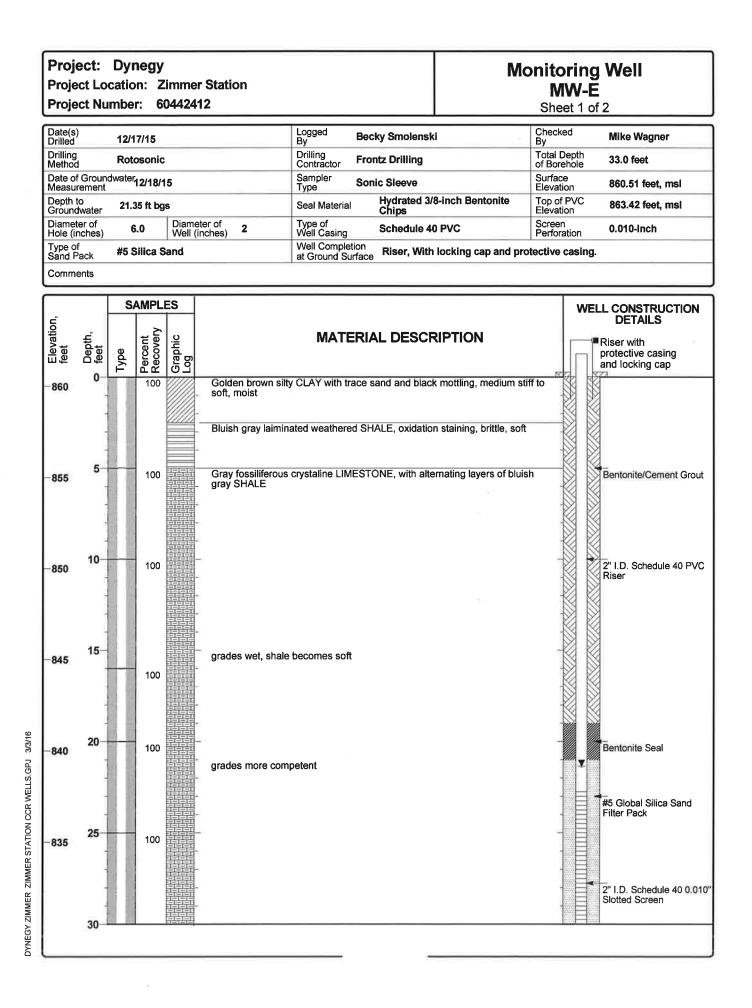


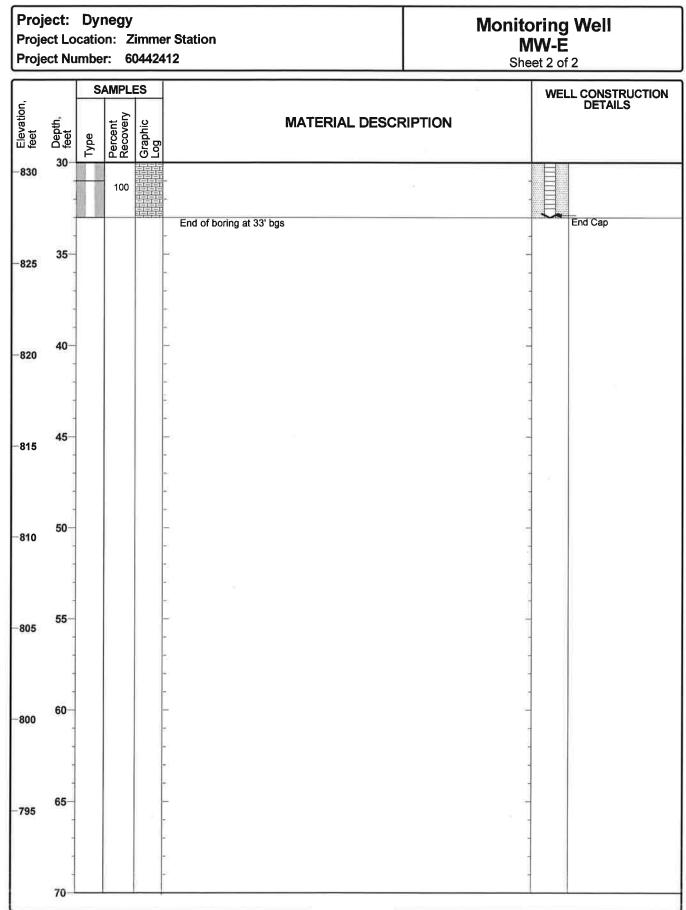
Pag DA	ge 2 c TE:		/8/10 -	2/9/	10		G OF BORING NO. MW-24 IER LANDFILL EXPANSION MOSCOW, OHIO				BE	BC	R
LOC	ATIO	N: As	Staked				COORDINATES : N 1764.1; E 17056.9			EL	EVATIC	DN: 85	50.9
DRII	LINC	METH	HOD:	3-1/	4" I.I). Hol	low-stem Auger	С	OMPLE	TION D	EPTH:	34	.2'
SAM	PLER	(S):		2-1/	2" O.	D. Sp	lit-barrel Sampler NQ Rock Core Barrel						
ELEV.	C DEPTH,	SAMPLE NUMBER	SAMPLE SAMPLE EFFORT	N 60	SAMPLE REC-%	uscs	DESCRIPTION	NATURAL CONSISTENCY IND					TEST RESULTS
н	-25-	SA	S/S						ASTIC L		LIQUID		KESUL 15
		11	RQD 09	0	100		Hard gray limestone interbedded with soft to medium-hard gray shale, nearly		0 2	20 3	0 4	0	
							horizontally bedded, many diagonal and				1111	1111	
							horizontal fractures, few fossils (limestone	1111			1111		
		_					53%; Shale 47%).	18411			1411	1111	
Ĩ								1441		1111	1141	123	
								1443	응 성	83.83	1111	1131	2
	-	5						1111	12112				1
	-							1113	10111	1111	1 = 11	1111	1
5	- 30-	i - 1						1131			1111		Ś.
		12	RQD 29	2%	95			1.211				198	
		12		1000	35			1994 \$	121-231	53 B.	3561	1.124	
				1					13133	13 I.S.	1211	1111	
							1313		1121	1135			
									분분				
													1
816.8	\leftarrow										1111		
	20										1.1.1		
0	- 35-						- Encountered seepage at 3.0'.	1991	1414	11111	1111	104	
							- Encountered water at 17.6'.				134	444	
							Packer testing performed in rock stratum.Boring converted to groundwater				1111		ŝ
	-						- Boring converted to groundwater monitoring well-see separate well log	1111	13 53	1111	1111	1111	
		·					monitoring well-see separate well log MW-24 for well completion diagram.				3344		2
							- Boring location and elevation surveyed by	THE			1111	1111	
							ALS, Inc.			10.00		101	
	-40-									1111			
				l I									
		i l						1011	1111	1111		10101	
								3111	13 [2]		13.53		
1										리표	411	1111	
1	+									33			
	_		1							61.63			i.
1													
	-45-							1111	1111	5153	13 13	9 H H H	
									1333	1912		34.54	
1								3131	1010102	21 14	23.53	813	
ſ									1333	121 221		2134	
								1111				1111	
1	-							21 8 1 1 3 8 3 5	1223	131_52		101 101 103 101	
	\vdash							3333	1311	11111	1111	23.23	
1								3 84 8	1111	13 13	813	13 33	
1	50-							111	2001.01	Vot Bol	1121	\$1.83	
WAT	ER LE	VEL:	⊈ "Dr	'y"	1		G - Gradation See H - Penetrome	Contrained on Contraction of Contrac	Dri	ll Rod E	nergy R	atio : 0	.85
WAT	FER N	OTE ATE:	Prior to 2/9/	Cori	ng		Q - Uncon Comp T - Triax Comp C - Consol. Separate Curves D - Relative	Wt (pci	E) La	ast Calil Drill I			2/17/09 ATV 550X


- 12

- X - II

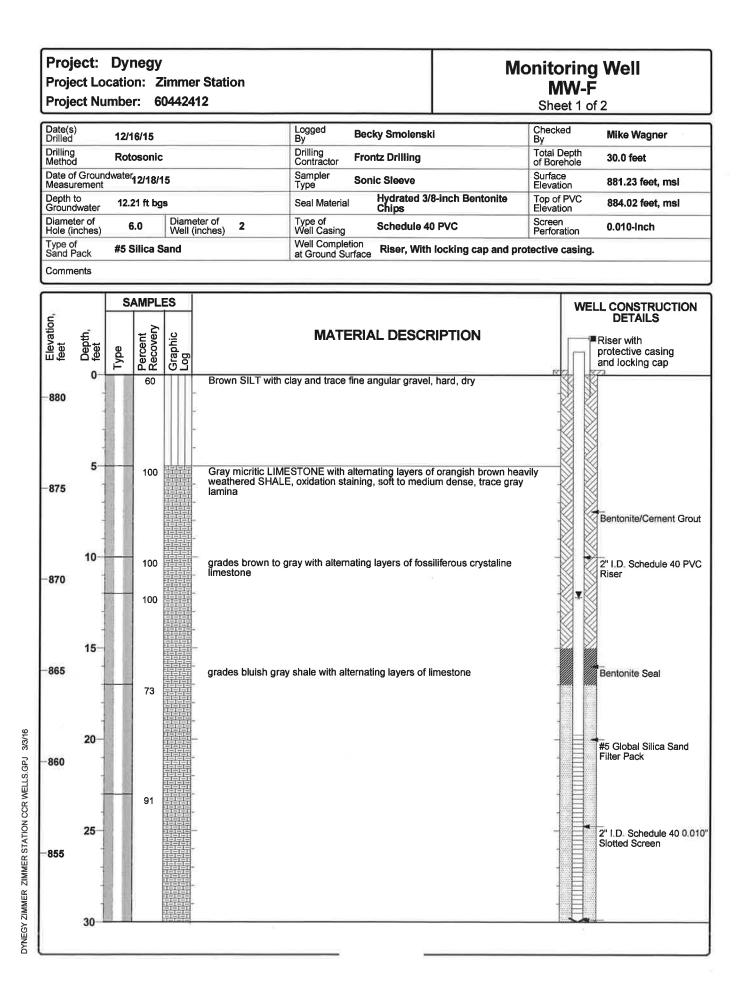
Elevation	Depth Below Ground								
(Feet above MSL)	Surface (Feet)								
852.71	1.79	Top of Cove	er			U	4 1-	ach Diama	atas Drotastiva Staal Casing
852.59	1.67	Top of PVC	;				<u>4</u> - Ir	ICH Diame	eter Protective Steel Casing
					\prod	-	2 Ir	nch Diame	eter Flush-Thread PVC Casing
850.9	0.0	Ground Sur	face				Ground Su	Irface	
N/A	0.0	Top of Grou	Jt			\sim	Concrete		
		- 68					Boring Dia	meter (in	inches)
							6 1/4 "		to 21.3
							5 5/8 "	_	to 38.5
									to
						\sim	Grout: Be	enseal	
829.9	21.0	Top of Ben	tonite						
					x x		Bentonite \$	Seal:	Hole Plug
827.9	23.0	Top of Filte	r Pack			a c			
#VALUE!	?	Top of Aqui	ifer				20 - 5	Slot Scree	n
825.9	25.0	Top of Scre		ae					
020.5	23.0	Top of ocie	en openin	93	88≃8				
					総 三 総				
					鐵三錢	8			Next David
					緣二餘		Filler Pack	. <u>NO. 5 G</u>	Quartz Sand
					二	2			
					[2] [2] [3] [3] [3] [3] [3] [3] [3] [3] [3] [3				
816.3	34.6	Bottom of S	Screen Ope	enings	88 = 8	ŝ			
815.9	35.0	Bottom of V	Vell		\sim	Š.			
N/A	N/A	Bottom of A	Aquifer						
815.9	35.0	Bottom of E	Boring		(NOT TO SCALE	Ξ)			
					1			Ĩ	
Static Wate	er Elevation:		828.99	820.89	830.99	830.99	830.99	-	
	Date:	4/14/10	4/15/10	4/15/10	4/22/10	4/30/10	7/1/10		
Well Develo	opment:								WELL COMPLETION DIAGRAM
	ed prior to h			40 "					
	d bailed 7 ga				oiumes				Project Name: Zimmer Landfill Lateral Expansion PTI
	(0-2 gallons set in 3'x3'			griuy siity)					Project Location:
•	See boring			juifer detei	rmined from	log.			Moscow, Ohio
	Packer testi	ng performe	ed prior to v	vell installa	ation.				Project Number:
	1st reading	prior to pack after bailing		a reading	atter surging) ,			011-05718-005 Boring Number:
Well Locatio		arter baining	-						MW-24




DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 3/3/16

DYNEGY ZIMMER ZIMMER STATION CCR WELLS, GPJ 3/3/16

DNR 7802.05e	WELL LOG AND C Ohio Department of Division of Water, 2045 Morse R	of Natural Reso oad, Columbus	urces , Ohio 4			Well Log N 20570 of 1	43	rooord
w	Voice (614) 265-674	1 Tax (014) 20		CONSTRU	ICTION DETAIL			ecora.
	Township WASHINGTON		ROTO	SONIC Measured from	n ground surface)	Depth		ft.
Owner/Builder	NEGY - ZIMMER	Casing Diar	neter	<u> 2 in l</u>	Length25			
1781 SR 52 Address of Well Location		Casing Diar	neter Above G	in, l	inches I Length2	_ ft. Thickn 2.5	ess	in. ft.
Permit No.	Zip Code +4 45153 Section; and or Lot No	Type { 2:						
Use of Well MONITOR Coordinates of Well (Use only on State Plane Coordinates	ne of the below coordinate systems)	Joints {1: 2:	eaded					
	+/- <u>4593</u> ft. 3 +/- <u>5285</u> ft.	Type PRE	PACKED	SLOTTED	0.01 in. Scr 0 Material ft_ and	P	VC	
Latitude: 0 Elevation of Well in feet: 8	Longitude: 0	GRAVEL PACH Material/ #5 Size	K (Filter Pa ilica San	ack) d	Vol/Wt. Used 250			
Source of Coordinates: TERRES Well location written description	STRIAL SURVEY	Depth: Placed	From:	38	5ft. To:			fi
MW-D		Method of Insta	llation _	Pumped w/	Used <u>4.5</u> Tremie pipe ft. To:			
Comments on water quality/qua	antity and well construction:	FORMERONO			LING LOG*			
		Color			S) AT WHICH WA	TERISE		
		BROWN	Text	EY	Formation SILT		From 0	То 5
		DARK GRAY				AND SHAL	E 5	35
	MELL TEOT *		*********			******		
Pre-Pumping Static Level14 Measured from _TOP OF CASIN Pumping test method	2012A							
Test Rate gpr Feet of Drawdown ft. *(Attach a copy of the pumping to Is Copy Attached? Yes	m Duration of Test hrs. Sustainable Yield gpn est record, per section 1521.05, ORC) IX No Flowing Well? Yes IX No							
P	UMP/PITLESS							
Type of pumpft. Pitle Pump set atft. Pitle Pump installed by								*******
Drilling Firm FRONTZ DRILLING Address 2031 RD MILLERSBU	RG		******					
(Filed Ele	FRONTZ Date 5/13/2016_ actronically)				nost water.) <u>LIMES</u>			
ODH Registration Number 0120		Date of Well Co	mpletion	12/14/	ZU15 Total	Depth of V	vell;	<u>35</u> ft



DYNEGY ZIMMER ZIMMER STATION CCR WELLS, GPJ 3/3/16

í

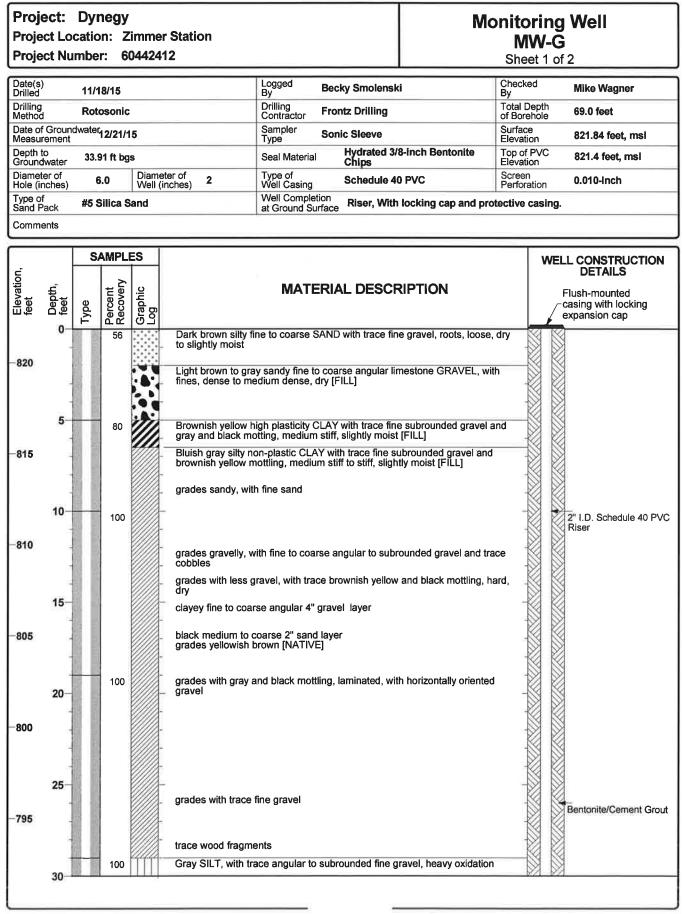
WELL LOG	AND DR	RILL	ING RE	EPOR	Г		Well Log N	umber	
	epartment of N	latural	Resources				20570	45	
	4) 265-6740 F				000	Page	1_of_1_	for this r	ecord.
WELL LOCATION	/			CONS	TRUCTIC	N DETAI			
	Dr	rilling N	lethod: RO	TOSONIC					
County CLERMONT Township WASHINGTON	B	OREH	OLE/CASIN	G (Measure	d from grour	nd surface)			
		(Bore	hole Diamete	er	6 ir	nches	Depth	33	ft.
DYNEGY - ZIMMER	1	Casi	ng Diameter_	2	in. Length	23	ft. Thickn		
Owner/Builder		(Bore	hole Diamete						
1781 SR 52	2	Casi	ng Diameter		in Length	1	ft Thickn	ess	in
Address of Well Location			Height Above						
City MOSCOW Zip Code +4 4	5153	(1: PVC						
Permit No Section; and or Lot No.			2:						
Use of Well_MONITOR		ŕ	• Threader	4					
Coordinates of Well (Use only one of the below coordinate systems)	J	Joints	2:						
State Plane Coordinates		CREE	2						
N 🕅 X316677 +/2666 ft.			rin.	Slot Size	0.01	in Sc	reen Lenath	- 10) #
S Y 1495460 +/- 6258 ft.			PREPACH				-		
Latitude, Longitude Coordinates			/een						
Latitude: 0 Longitude: 0									
Elevation of Well in feet:863.4 ^{+/-} ft.	Mi	aterial	L PACK (Filte #5 Silica S	and	V	ol/Wt.	5 lbs		
Datum Plane: NAD27 X NAD83 Elevation Source TERF		Size	of Installation		(gravity)	Used 21	5 100.		
			Placed From:					21	
Source of Coordinates: TERRESTRIAL SURVEY Well location written description:						π. ιο);	21	π
Weindealion whiten description.	G	ROUT	Bentonite/c	omont elu	V	ol/Wt.	aubia faat		
MW-E									
			of Installation					0	
	De	eptn: H	Placed From:		19	π. ιο		0	π
				0	RILLING	LOG*			
Comments on water quality/quantity and well construction:	F	ORMA	TIONS INCL						FRED
		Color		exture		rmation		From	To
		ROWN		TY	CL			0	3

			DR	ROKEN		ALE		3	5
	G	RAY			LIN	IESTONE	AND SHAL	.E 5	33

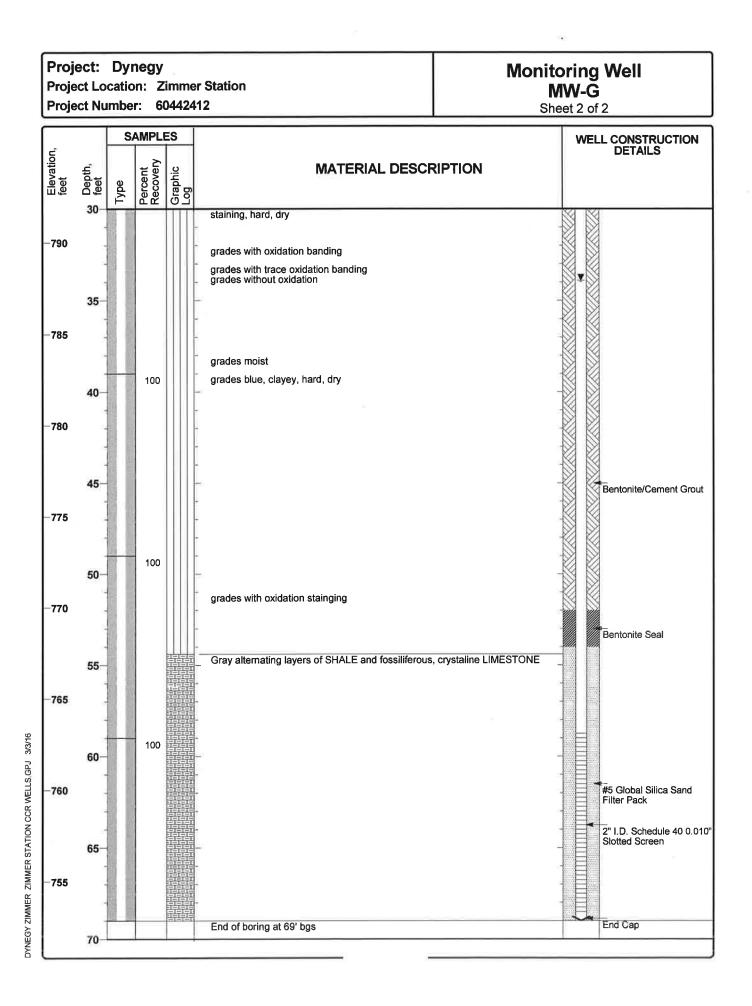
WELL TEST *									
(Alankanin	2045								
Pre-Pumping Static Level 21 ft. Date 12/17/2	2015					*****			**********
Measured from TOP OF CASING									
Pumping test method									
Test Rate gpm Duration of Test									
Feet of Drawdown ft. Sustainable Yield	gpm								
*(Attach a copy of the pumping test record, per section 1521.05, OR									
Is Copy Attached? 🗌 Yes 🛛 🛛 No 👘 Flowing Well? 🔲 Yes	🗵 No								
PUMP/PITLESS									
FOWF/FILESS									
Type of pump Capacity	gpm					••••••••••••••••••••••			
Pump set atft. Pitless Type								*****	
Pump installed by									
I hereby certify the information given is accurate and correct to the best of r	ny knowledge.								
Drilling Firm FRONTZ DRILLING, INC.									
Address 2031 RD MILLERSBURG									
City, State, Zip WOOSTER OH 44691									
	5/13/2016								
(Filed Electronically)	Aq	quifer T	ype (Formatio	n producing	the most wa	ater.) LIME	STONE & S	HALE	
ODH Registration Number 0120	Da	ate of \	Nell Complet	ion 1	2/17/2015	Tota	I Depth of W	Vell3	<u>33</u> ft.

Proje		catio	n: Z		r Station 12	N	Dring Well NW-F Beet 2 of 2
ation,	Ċ.	S	AMPLI		MATERIAL DESCR		WELL CONSTRUCTION DETAILS
Elevation, feet	05 Depth, feet	Type	Percent Recovery	Graphic Log			
850				-	End of boring at 30' bgs		End Cap
845	35-						-
840	40-						
835	45						
B30	50			-			
825	55- - -						-
820	60 - -			-			
315	65			-			
	70						-

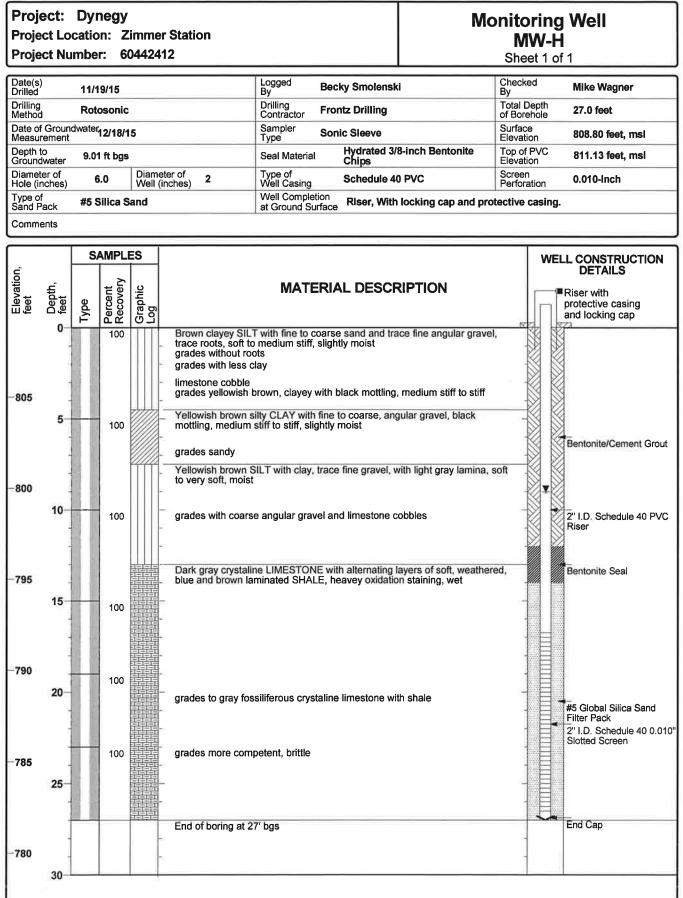
DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 3/3/16


DNR	7802.05e	
-----	----------	--

WELL LOG AND DRILLING REPORT Ohio Department of Natural Resources Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605 Voice (614) 265-6740 Fax (614) 265-6767


Well Log Number 2057046

Page 1 of 1 for this record.


	VOICE (014) 200-074	01 ax (014) 2		-155 7 87167		<u> </u>
w	ELL LOCATION			NSTRUCTION DETA	ILS	
		Drilling Metho	d: <u>ROTOSO</u>	NIC		
County CLERMONT	Township WASHINGTON			sured from ground surface)		
		Borehole	Diameter	6inches	Depth 30	
	NEGY - ZIMMER	Casing Di	ameter <u>2</u>	in. Length <u>15</u>	ft. Thickness	
Owner/Builder		Borehole	Diameter	inches	Depth	
1781 SR 52		LCasing Di	iameter	in_ Length	ft. Thickness	
Address of Well Location				nd		
	Zip Code +445153		VC			
	Section; and or Lot No	2:				
Use of Well MONITOR		loints { t: I	hreaded			
Coordinates of Well (Use only or	ne of the below coordinate systems)	A CONTRACTOR OF A CONTRACTOR O				
State Plane Coordinates		SCREEN		0.04		10 4
N 🛛 X315312				ze0.01in\$		
S 🗌 Y <u>149543</u>				LOTTED Material		
Latitude, Longitude Coordina) ft. and		
Latitude: 0	Longitude:	GRAVEL PA	CK (Filter Pack)	Vol/Wt. Used 2	40 lb a	
Elevation of Well in feet:		Size #5	Silica Sand	Used 2	TU IDS.	
	NAD83 Elevation Source TERRESTRIAL			ured (gravity)		
Source of Coordinates: TERRE		Charles and the second second second	d From:	<u> </u>	io: <u>17</u>	ft
Well location written descriptio	n:	GROUT		Vol/Wt. slurryUsed_4		
1045						
MW-F				mped w/Tremie pipe		
		Depth: Place	d From:	15 ft. 1	.ïo:0	ft.
				DRILLING LOG*		
Comments on water quality/qu	antity and well construction:	FORMATION	IS INCLUDE I	DEPTH(S) AT WHICH		NTERED
			Texture			1
						0 5
		GRAY	SILTY			
		GRAT	BRUKEN		EAND SHALE	3 30
	WELL TEST *					
Pre-Pumping Static Level1		1				
Measured from <u>TOP OF CASI</u>	NG	-			10000000000000000000000000000000000000	
Pumping test method	Duration of Test hrs.	-				
Test Rate gp						
Feet of Drawdown ft		1				
	test record, per section 1521.05, ORC)					
Is Copy Attached? Yes	🗵 No Flowing Well? 🗋 Yes 🗵 No					
F	PUMP/PITLESS					
Type of pump	Capacity gpm				******	
Pump set atft. Pitle						
Pump installed by	000 1995	1				
	ven is accurate and correct to the best of my knowledge.				,,	
Drilling Firm FRONTZ DRILLIN						
					······	
Address 2031 RD MILLERSBU						
City, State, Zip WOOSTER OH		******				
0	EFRONTZ Date 5/13/2016 lectronically)	Aquifer Type	(Formation produ	ucing the most water.) LIM	ESTONE & SHALL	ll F
		Date of Well				
ODH Registration Number 012(u	Logic of Mell		12/10/2010 10	tal Depth of Well	<u> 30 </u> ft.

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 3/3/16

WELL LOG AND D	RILLING REPORT	Well Log Number
	f Natural Resources oad, Columbus, Ohio 43229-6605	
Voice (614) 265-674	0 Fax (614) 265-6767	Page_1_ of _1_ for this record.
WELL LOCATION	CONSTRUCTION	DETAILS
	Drilling Method: _ROTOSONIC	
County CLERMONT Township WASHINGTON	BOREHOLE/CASING (Measured from ground	,
DVALEON TRAVED	Borehole Diameter <u>6</u> incl	
DYNEGY - ZIMMER Owner/Builder	_ ' \Casing Diameter2in. Length _ _ ∫Borehole Diameterincl	
1781 SR 52	2 Casing Diameterin. Length	ft Thickness in
Address of Well Location	Casing Height Above Ground	
City_MOSCOW Zip Code +4 45153	(DVC	
Permit No Section; and or Lot No	Type 2:	
Use of Well MONITOR	Joints {1: Threaded 2:	
Coordinates of Well (Use only one of the below coordinate systems)	2:	
State Plane Coordinates	SCREEN	
N ⊠ X <u>316282</u> + [/] - <u>484</u> ft. S □ Y <u>1492978</u> + [/] - <u>7138</u> ft.	Diameter 2 in. Slot Size 0.01	
S Δ Y <u>1492976</u> π. Latitude, Longitude Coordinates	Type <u>PREPACKED SLOTTED</u> M Set Between <u>69</u> ft.	
Latitude: 0 Longitude: 0		
Elevation of Well in feet:821.4 +/ ft.	GRAVEL PACK (Filter Pack) Vol. Material/ #5 Silica Sand U	Wt. sed 350 lbs.
Datum Plane: NAD27 🗴 NAD83 Elevation Source TERRESTRIAL	Method of Installation Poured (gravity)	
Source of Coordinates: TERRESTRIAL SURVEY	Depth: Placed From: 69	ft. To: 54 ft
Well location written description:	GROUT Vol	Wt.
MW-G	Material Bentonite/cement slurry U	
	Method of Installation <u>Pumped w/Tremie</u>	
	Depth: Placed From: 53	π, 10:π
	DRILLING L	.0G*
Comments on water quality/quantity and well construction	FORMATIONS INCLUDE DEPTH(S) AT W	HICH WATER IS ENCOUNTERED.
		nation From To
	DARK BROWN SILTY SANI	
	BROWN-GRAY SANDY GRAY	
		DCLAYGRAVEL 5 29
	GRAY SILT	
	GRAY SHAI	E AND LIMESTONE 54 69
ω. L		
WELL TRATE		
WELL TEST *		
Pre-Pumping Static Level 33 ft. Date <u>11/18/2015</u>		
Measured from <u>TOP OF CASING</u> Pumping test method		
Test Rate gpm Duration of Test hrs.		
Feet of Drawdown ft. Sustainable Yield gpm		
*(Attach a copy of the pumping test record, per section 1521.05, ORC)		
Is Copy Attached? Yes X No Flowing Well? Yes X No		
PUMP/PITLESS		
Type of pump Capacity gpm		
Pump set atft. Pitless Type		
Pump installed by I hereby certify the information given is accurate and correct to the best of my knowledge.		
Drilling Firm FRONTZ DRILLING, INC.		
Address 2031 RD MILLERSBURG]	
City, State, Zip WOOSTER OH 44691		
Signed STEVE FRONTZ Date 5/13/2016		
(Filed Electronically)	Aquifer Type (Formation producing the most wate	
ODH Registration Number _0120	Date of Well Completion 11/18/2015	Total Depth of Well69ft.

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 3/3/16

÷

WELL LOG AND D		Well Log Number			
DNR 7802.05e Ohio Department of	f Natural Resources	2057048			
Division of Water, 2045 Morse Ro Voice (614) 265-6740	oad, Columbus, Ohio 43229-6605 D Fax (614) 265-6767	Page 1 of 1 for this record.			
WELL LOCATION	CONSTRUCTION				
	Drilling Method: ROTOSONIC				
County CLERMONT Township WASHINGTON	BOREHOLE/CASING (Measured from ground si	urface)			
	Borehole Diameter 6 inche	es Depth <u>27</u> ft.			
DYNEGY - ZIMMER	Casing Diameter2in. Length				
Owner/Builder	2 Borehole Diameterinche Casing Diameterin, Length	es Depthft.			
1781 SR 52 Address of Well Location	Casing Diameterin, Length	ft Thicknessin.			
	Casing Height Above Ground				
City_MOSCOW Zip Code +445153 Permit No Section;	Type { 1: PVC				
	(to Threaded				
Coordinates of Well (Use only one of the below coordinate systems)	Joints { 1: Threaded				
State Plane Coordinates	SCREEN				
N ⊠ X <u>315757</u> +/- <u>4048</u> ft.	Diameter 2 in Slot Size 0.01	in. Screen Length 10 ft.			
S V 1492534 +/- 264 ft.	Type PREPACKED SLOTTED Mat	terial PVC			
Latitude, Longitude Coordinates	Set Between 27 ft. a				
Latitude: 0 Longitude: 0	GRAVEL PACK (Filter Pack)	N#			
Elevation of Well in feet:811.1 +/ ft.	GRAVEL PACK (Filter Pack) Vol/V Material/ #5 Silica Sand Use	ed 210 lbs.			
Datum Plane: NAD27 🗵 NAD83 Elevation Source <u>TERRESTRIAL</u>	Method of Installation Poured (gravity)				
Source of Coordinates: TERRESTRIAL SURVEY	Depth: Placed From: 27	ft. To:ft			
Well location written description:	GROUT Vol/V	Vt.			
MW-H	Material Bentonite/cement slurry Use				
	Method of Installation Pumped w/Tremie pi Depth: Placed From: 13				
		_ π. ιο: π.			
	DRILLING LC	DG*			
Comments on water quality/quantity and well construction:	FORMATIONS INCLUDE DEPTH(S) AT WH	IICH WATER IS ENCOUNTERED.			
	Color Texture Form				
	BROWN CLAYEY SILT	0 4			
	BROWN SILTY CLAY	4 13			
	DARK GRAY LIMES	TONE AND SHALE 13 27			
÷.					
WELL TEST *					
Pre-Pumping Static Level 9 ft. Date 11/19/2015					
Measured from TOP OF CASING					
Pumping test method					
Test Rate gpm Duration of Test hrs.					
Feet of Drawdown ft. Sustainable Yieldgpm					
*(Attach a copy of the pumping test record, per section 1521.05, ORC)					
s Copy Attached? 🗋 Yes 🛛 No Flowing Well? 📋 Yes 🖾 No					
PUMP/PITLESS					
Type of pump Capacitygpm Pump set atft. Pitless Type					
Pump installed by					
I hereby certify the information given is accurate and correct to the best of my knowledge.					
Drilling Firm FRONTZ DRILLING, INC.					
Address 2031 RD MILLERSBURG					
City, State, Zip WOOSTER OH 44691					
Signed STEVE FRONTZ Date 5/13/2016					
(Filed Electronically)	Aquifer Type (Formation producing the most water.) CLAY			
ODH Registration Number <u>0120</u>	Date of Well Completion 11/19/2015	Total Depth of Well27ft.			

Attachment B

Well Wizard Sampling Pumps, Equipment Specifications

PLEASE GIVE THIS INFORMATION PACKET TO THE PERSON(S) COMPLETING THE INSTALLATION

The Information provided within this packet is designed to assist in the installation of **WELL WIZARD**[®] Pump equipment.

This information has been produced specifically for the site at which this equipment is to be installed.

Every effort is made at the factory to include all of the down-well components for a single pump assembly or system in one package. On the outside of these packages, the well ID's and components are clearly labeled. However, there are times when components are too large to be included with the complete system. When this occurs, they are inside another package and that package is clearly marked with the item number and well ID.

When heading out to the well, please make sure to take along all of the components for that specific well. Include any tools or other supplies that will make installation easier.

QED Environmental Systems Phone: 1-800-624-2026 After Hours Phone: 1-800-272-9559

WELL WIZARD

SYSTEM "A" Bladder Pump Only

System Components Checklist:

B Pump Tubing

C Pump

Options: Pump Inlet Screen

System Components Instructions:

- 1. Attach pump inlet screen to pump inlet (if applicable).
- 2. Attach bladder pump tubing to pump.
- 3. Lower pump to desired depth.
- 4. Pass discharge tube through cap and attach air line under cap.

Table of Contents

Торіс	Page
Contacting QED/ Introducing Well Wizard	1
Sampling Pump	2-3
How Bladder Pump Works	4-5
Pump Tubing/Inlet Screen/Well Cap	6
Well Cap	7
Portable Components	
Installing the Components	
Installing the Inlet Screen	10
Installing the Sample Pump	11
Installing the Sample Pump With Bulk Tubing	12-13
Bladder Pump Operation In Low Submergence	14
Install Or Replace Pump Connectors	15-17
Well Wizard System Type A (Basic System)	18
Well Wizard System Type L (Inlet Extension)	19
Sample Pump Troubleshooting Guide	20
QED Well Wizard Warranty	21-22

Introducing Well Wizard

Contacting QED

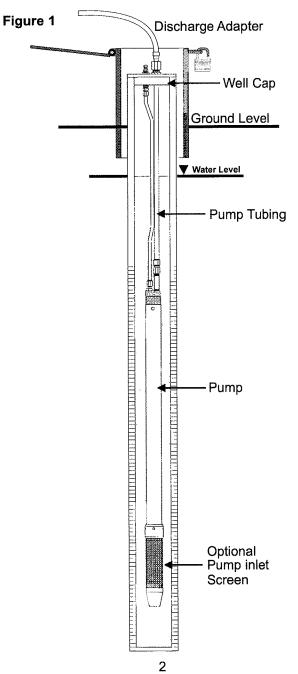
Please call our Customer Service Department at one of the following numbers for assistance

- Monday through Friday, 8:30 a.m. to 5:00 p.m. EST: (734) 995-2547
- After Hours and weekends: 1-800-272-9559 (or 1-734-746-8045 if you are outside the U.S.)

Introduction

To monitor the quality of ground water, you need an efficient way to collect unbiased samples. Well Wizard[®] is a total system for meeting all your ground water monitoring needs - with the flexibility to meet your special requirements. This section describes the components of the Well Wizard System.

The Well Wizard system includes both dedicated and portable components. The water contacting components are dedicated; you permanently install them in each well. The control elements are portable; you transport them from well to well.


BASIC DEDICATED COMPONENTS

- A sampling pump
- Pump Tubing
- An optional inlet screen
- A well cap
- Discharge Adapter
- Freeze Protection

The following sections describe these components.

Sampling Pump

A Well Wizard $^{\textcircled{R}}$ sampling pump is an air-actuated bladder pump that you permanently position in the well.

Sampling Pump

As figure 1 shows, you normally position the pump inlet midway in the screened section of the well, suspending it by two tubes that supply air to the pump and convey the water sample to the well cap. Whenever possible, pumps are shipped already preassembled to the tubing and the well cap assembly.

Several types of Well Wizard® bladder pumps are available.

1100 Series Pumps

The 1100 series pumps include 4 major components:

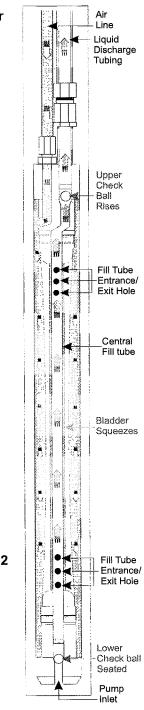
- Upper-end check valve assembly (polyvinyl chloride (PVC or Teflon $^{\ensuremath{\mathbb{R}}}$)
- Lower-end check valve assembly (PVC or Teflon)
- Bladder Cartridge (Teflon)
- Pump Body (PVC or Teflon)

You can totally disassemble the pump without tools by unscrewing each end cap and pushing the bladder cartridge out of the pump body (for more information refer to the instructions included with the field-replaceable bladder kit).

1200 Series Pumps

The 1200 series pumps include 2 major components

- Bladder Cartridge assembly (either Teflon and stainless steel or PVC and stainless steel)
- Pump Body (Stainless Steel)


You can partially disassemble the pump (for more information refer to the instructions included with the field-replaceable bladder kit).

How Bladder Pump Works

The bladder pump has two alternating cycles (refer to figures 2 & 3).

Discharge Cycle

During the discharge cycle, air forced into the space between the pump body and the pump bladder squeezes the water inside the bladder into the exit/entrance holes of the fill rod. As air pressure increases, liquid-having no place else to go - is forced up the discharge line and to the surface. At the same time, the top check ball rises with the discharging liquid while the bottom check ball is forced down by the air pressure; this seals the pump inlet so that no water can enter the bladder chamber.

Figure 2

How Bladder Pump Works

Refill Cycle

During the refill cycle, with no air pressure holding it down, the water pressure pushes the bottom check ball up, allowing the water to reenter the bladder chamber. The bladder expands as it refills with water. Simultaneously, the top check ball is forced down and seals because of the force of the water pressure above it from the water in the discharge tubing, this prevents the water in the discharge tube from reentering the bladder chamber.

Caution: A Well Wizard[®] pump bladder can be punctured if you pump sand. So be sure to use an inlet screen in wells with high sand and sediment content, or when the inlet of the pump is placed within 2 feet of the bottom of the well. Remember, the Well Wizard 10-year warranty is void if you do not use an inlet screen.

Figure 3

Pump Tubing/ Inlet Screen/ Well Cap

Pump Tubing

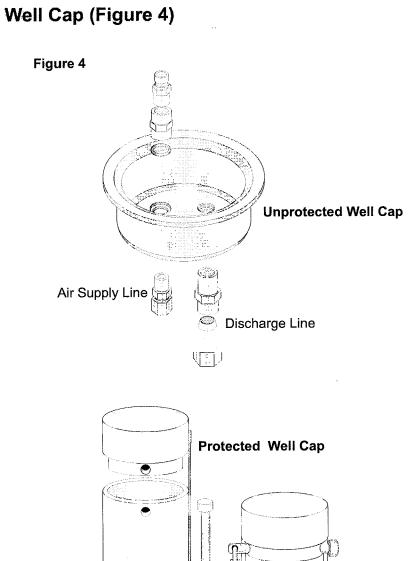
A ground water sample is only as good as the tubing it runs through. Your Well Wizard[®] was shipped with one of the following types of superior-quality tubing:

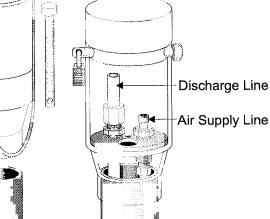
- Polyethylene
- Teflon[®] -lined polyethylene
- Teflon

Most tubing is supplied as a bonded pair (air supply and discharge), to save time and avoid tube entanglement.

Unless your order specified that you wanted *bulk* tubing, the tubing for your Well Wizard bladder pump is pre-cut to the correct length for your well.

Inlet Screen


An inlet screen can protect the bladder in your Well Wizard pump by preventing sand from contacting the bladder. If you install a screen on your dedicated Well Wizard bladder pump, QED warranties the pump for a full 10 years.


Well Cap

You fit a well cap to the top of the well casing to suspend the pump and tubing. There are two terminal fittings inside the basic well cap (see figure 4).

- A compression through fitting for the discharge line
- A short brass *quick-connect nipple* for the pump air-supply line

The *protected* well cap has a lid with a lock pin. You can record well identification and reference date information on the cap label. The *unprotected* well cap is meant for wells located within a user-supplied protected standpipe.

Portable Components

Portable Well Wizard[®] components include a cycle controller, waterlevel meter, disposable sample filters, and a flow-through cell.

Controller

A controller controls operation of the Well Wizard pump by regulating the air flow from a compressed-gas source to the pump.When connected to an appropriate compressed-gas source, the controller alternately pressurizes then vents the air supply line to the pump, allowing the pump to discharge and then fill with water. For more information, please refer to the operation and installationmanuals for the individual controllers.

Water Level Meter

The model MP30 drawdown/water level meter can be connected to the QED cycle controllers to automatically control the drawdown during purging and sampling.

The series 6000 electronic water-level meters use a portable conductivity probe attached to a calibrated tape. There is a light and audio signal when the probe touches the water surface.

Flow Cell

The MP20 is QED's *optional* flow cell. The MP20 lets you know when it's okay to sample - generally saving you from spending a lot of time and from removing large volumes of purge water. The MP20 signals when stabilization has been achieved for selected water parameters.

QuickFilter®

To ensure accurate samples of dissolved metals, you can use an optional QED QuickFilter. It removes solids larger than 0.45 micron. Because QuickFilters are disposable - you use one for each sampling event - there's no need to try to clean or decontaminate the filter from well to well.

Installing the Components

If you've received a set of preassembled dedicated components, you'll find that unpacking them and installing them is easy when you follow the following instructions. Because not everyone needs to read this whole section, the first section helps you decide which of the other sections you need to read.

If, instead of preassembled components you've received unassembled components and bulk tubing, read the section titled "Installing a Pump Using Bulk Tubing."

Unpack the Components

Here's how to unpack the Well Wizard® dedicated components.

- If you need to install a Well Wizard system in more than one well, decide which well you want to do first. Then find the box of components with the correct well-identification number written on the outside of the box.
- 2. Carry the box to the well site, then open the box, but don't touch anything yet.
- **3.** Open the box, then, before unpacking the rest of the box, put on a pair of latex gloves.

Caution: Touching well components with your bare hands can contaminate the components and degrade the quality of the samples obtained using the Well Wizard system, and at any other time when your hands might touch a water-contacting component.

4. Taking care to *not kink the tubing*, gently remove the plasticwrapped pump and tubing from the box. A label on the package provides the well cap ID, cap, and tubing length. You may need this information later, so save the label.

Note: The plastic bag also contains the lab-clean certificate on which is recorded the pump batch serial number. Keep this tag for each pump you install. It's your proof that the pump is contaminant free - if you need to, you can call QED with the serial number to find out which lab certified the pump.

5. Open the plastic wrapping, then gently slide the pump out of the bag.

Installing the Inlet Screen

Install the Inlet Screen

Well Wizard bladder pumps have a 10 year warranty that is valid *only* if you use the appropriate inlet screen.

There are two types of inlet screens: One that you thread onto the pump inlet for 1100 series pumps, and one that you secure with *set screws* for 1200 and 1300 series pumps. The correct screen for each pump is usually included with the other components for the well - the box label tells you where to find the screen. The following sections describe how to install the two types of inlet screens.

Screens For 1100 Series Pumps

To install a screen on an 1100 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove the screen.
- 2. Thread the screen onto the male-threaded pump inlet, making sure the screen is firmly tight.

Screens For 1200 and 1300 Series Pumps

To install a screen on an 1200 & 1300 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove from the bag both the screen and the small plastic bag that contains spare set screws and a small Allen wrench.
- 2. Find the groove around the inlet end of the stainless steel pump body (the end opposite the air and water connectors), then slide the screen onto the bottom of the pump assembly, aligning the top rim of the screen with the top groove.

Note: If you have difficulty installing the screen, use the Allen wrench to loosen the set screws a little.

- **3.** Using the Allen wrench, *lightly* tighten each of the set screws, then make sure the screws have engaged the groove.
- 4. Using the Allen wrench, *firmly* tighten each of the set screws.
- 5. Check to make sure the screen is secure.

Installing the Sampling Pump

Caution: Make sure that you don't bring the tubing or other pump components in contact with the ground or any other surface. It's often helpful to spread out a polypropylene tarp next to the well during installation.

- Still wearing the latex gloves, if you have a protected well cap, mark any necessary information - such as well ID and depth - on the label inside the well cap.
- 2. Slowly lower the pump into the well while uncoiling the tubing bundle, until the entire length of tubing is in the well.

Attaching Tubing to the Well Cap

To attach tubing to the well cap, follow the instructions included with the shipment for the appropriate well cap.

Installing a Pump with Bulk Tubing

This section is for you if you ordered your Well Wizard[®] components and tubing unassembled, The following sections tell you how to assemble the components and tubing.

Getting Ready

It's important to not contaminate pump components. Doing so can degrade the quality of the samples obtained using your Well Wizard system. Always wear latex gloves when unpacking and installing Well Wizard components, and any other time when your hands might touch a water-contacting component.

Install the Inlet Screen

Well Wizard bladder pumps have a 10 year warranty that is valid *only* if you use the appropriate inlet screen.

There are two types of inlet screen: One that you thread onto the pump inlet for 1100 series pumps, and one that you secure with *set screws* for 1200 and 1300 series pumps. The correct screen for each pump is usually included with the other components for the well - the box label tells you where to find the screen. The following sections describe how to install the two types of inlet screens.

Screens For 1100 Series Pumps

To install a screen on an 1100 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove the screen.
- 2. Thread the screen onto the male-threaded pump inlet, making sure the screen is firmly tight.

Screens For 1200 and 1300 Series Pumps

To install a screen on an 1200 & 1300 series pump, follow these steps:

- 1. Still wearing the latex gloves, open the plastic wrapping, then remove from the bag both the screen and the small plastic bag that contains spare set screws and a small Allen wrench.
- 2. Find the groove around the inlet end of the stainless steel pump body (the end opposite the air and water connectors), then slide the screen onto the bottom of the pump assembly, aligning the top rim of the screen with the top groove.

Installing a Pump with Bulk Tubing

Note: If you have difficulty installing the screen, use the Allen wrench to loosen the set screws a little.

- **3.** Using the Allen wrench, *lightly* tighten each of the set screws, then make sure the screws have engaged the groove.
- **4.** Using the Allen wrench, *firmly* tighten each of the set screws.
- 5. Check to make sure the screen is secure.

Connect the Pump to the Tubing

To connect the pump to the tubing, follow these steps:

- **1.** Separate the discharge (larger) tubing from the air-supply (smaller) tube for 8-12 inches from one end.
- **2.** Loosen the nut-and-ferrule assembly as much as possible without actually removing the nut.
- **3.** Push the air-supply tube into the matching fitting on the top end of the pump.
- 4. Tighten the nut.
- 5. Cut off a short length from the end of the discharge tubing to compensate for the offset height of the discharge tube fitting.

Note: This is usually 3 to 4 inches. You determine the exact length by checking both fitting nuts for full tube insertion after loose assembly.

- 6. Make sure that the tube-to-pump fit is correct before proceeding.
- 7. If the discharge tubing is 3/8" O.D. or larger, or if it has a Teflon lining, you must use a tubing insert, just push the insert into the tubing before inserting the tubing into the tubing fitting.
- **8.** Tighten both fitting nuts finger tight.
- **9.** For each fitting nut, hold the fitting base with *one* wrench and the fitting nut with *another* wrench, then tighten the fitting nut one additional turn.

Cut Tubing to Length

To cut the tubing to the correct lengths, follow these steps:

- **1.** Lower the pump into the well until the pump touches the bottom of the well.
- 2. Raise the pump up, as follows:
 - 1 foot, for low recovery wells
 - To the middle of the screen, for high recovery wells

Attaching Tubing to the Well Cap

To attach tubing to the well cap, follow the instructions included with the shipment for the appropriate well cap.

Bladder Pump Operation in Low-Submergence

Bladder Pump Operation in Low-Submergence Applications

Pump submergence is defined as the height of the static water column above the top of the pump. In wells in which this water column height is 5 feet or less, the pump is considered to be in a low-submergence application.

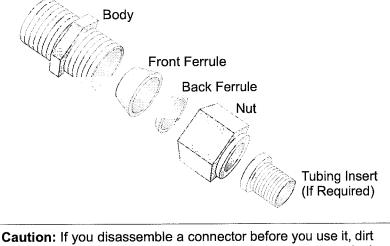
QED sampling bladder pumps fill by hydrostatic pressure. As the inside of the pump's bladder fills with water, the bladder expands. This filling and expanding of the bladder is referred to as the "refill" half of the pump cycle. When air pressure is applied to the outside of the bladder, the bladder is squeezed, forcing the water up the discharge tubing. This is referred to as the "discharge" half of the pump cycle. In low-submergence applications, there is less water pressure available to expand the bladder during the refill.

This can result in a smaller volume of water being pumped with each pump cycle because the bladder may not fully expand.

As a result of the lower volume per cycle, more time will be required to bring the water to the surface. An easy way to verify that the pump is working, prior to the water reaching the surface, is to submerge the pump's discharge tubing in a beaker of water. Each time the pump goes into discharge, air in the discharge tubing, which is displaced as the water level in the tubing rises, can be seen as air bubbles coming from the end of the tubing. To optimize the pumping rate, the refill time should be set long enough to achieve the maximum volume of air bubbles on each pump cycle, and the discharge time should be set long enough to ensure that the air has stopped bubbling out of the tube before the pump controller switches back into refill.

In low submergence wells, <u>it is critical that the air pressure driving</u> <u>the pump not be more than 10-15psi higher than the minimum re-</u> <u>quirement of 0.42psi per foot of pump depth</u>. Higher pressures than this can cause the bladder to be squeezed too tightly during discharge, a condition which can prevent the bladder from expanding during refill. To avoid this condition in deeper wells, it is suggested that the air pressure applied to the pump be gradually increased as the water level in the pump's discharge tubing rises. It is recommended that the air pressure be set at 15psi initially, and slowly increased in increments of 10psi as needed until the water reaches the surface. Submerging the end of the discharge tubing under water as described above will verify whether the air pressure is set high enough.

Install or Replace Pump Connectors


The following sections describe how to install or replace the three types of connectors that may be included in your Well Wizard system.

Stainless Steel Connectors

Swagelok[™] tube fittings, which include four pieces (see figure 5), come to you completely assembled, finger tight.

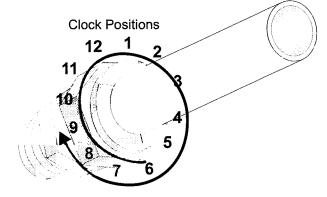
Figure 5

Parts of the Swagelok Tube Fitting

or foreign material can get into the fitting and later cause a leak.

To install a stainless steel connector, follow these steps:

- **1.** If you are working with a 1/2- or 3/4-inch connector, wrap the male threads under the nut with Teflon tape.
- 2. Insert the tubing into the Swagelok tube fitting as follows:
 - For 1/4 -inch tubing, insert it approximately 5/8 inch
 - For 3/4 -inch tubing, insert it up to 7/8 inch


Make sure that the tubing firmly contacts the shoulder of the fitting and that the nut is finger tight.

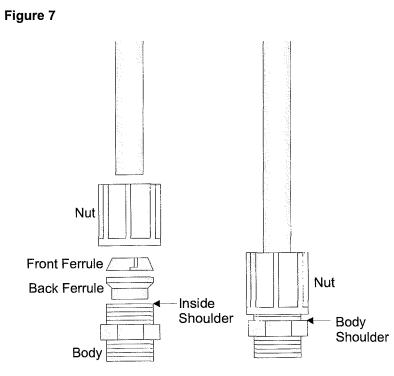
Note: If the discharge tubing is 3/8 inch or larger, you must use a tubing insert, just push the stainless steel insert into the tubing before inserting the tubing into the tube fitting.

Install or Replace Pump Connectors

3. Referring to figure 6, scribe or mark the nut at the 6 o'clock position.

Figure 6

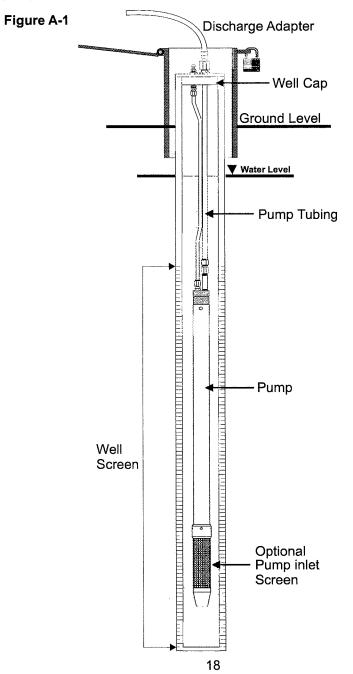
- **4.** While holding the fitting body steady with a backup wrench or vise, tighten the nut as follows, depending on the size of the tube fitting:
 - For fittings larger than 3/16 inch, turn the fitting one and one quarter turns (watch the scribe mark make one complete turn, then continue to the 3 o'clock position).
 - For fittings sizes 1/6, 1/8, and 3/16 inch, turn the fitting three quarters of a turn (watch the scribe mark turn to the 9 o'clock position).


Note: These are guidelines, you may need to further tighten the nut.

Install or Replace Pump Connectors

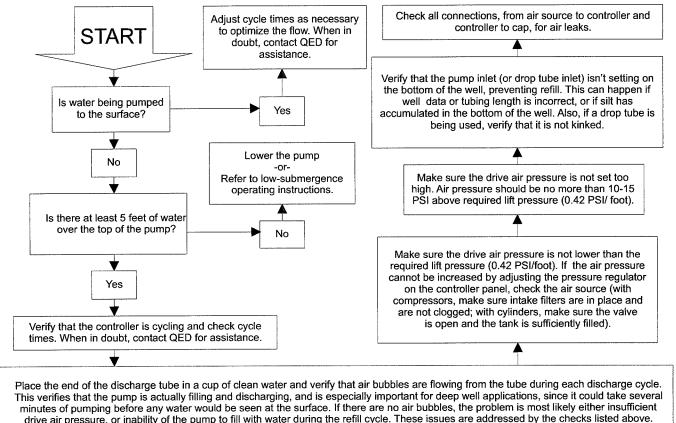
Polypropylene Connector

To install a polypropylene connector, follow these steps.


- 1. Cut the tubing cleanly and squarely to length.
- 2. If the tubing is larger than 1/2 inch, push an insert into the tube.
- **3.** Push the tubing into the completely assembled connector until it contacts the shoulder inside the fitting (see figure 7).
- **4.** Tighten the nut with a wrench, but be careful to not over tighten it; the nut should not come in contact with the shoulder of the body (see figure 7).

17

Sampling System Type A


Figure A-1 shows the Type A sampling system, the basic bladder pump

Sampling System Type L

Figure A-2 shows the Type L sampling system, a bladder pump with an inlet extension.

20

Sampling Pump Troubleshooting Guide

drive air pressure, or inability of the pump to fill with water during the refill cycle. These issues are addressed by the checks listed above. While performing the "bubble test", if water is being drawn up into the tubing during the pump refill, there is a problem either with drain-back through the discharge check ball or weep-hole. If drain-back is occurring, call QED for assistance.

٥

Well Wizard® System Warranty

QED ENVIRONMENTAL SYSTEMS, INC. ("Q.E.D.") warrants to the original purchaser of its products that, subject to the limitations and conditions provided below, the products, materials and/or workman-ship shall reasonably conform to descriptions of the products and shall be free of defects in materials and workmanship. Any failure of the products to conform to this warranty will be remedied by Q.E.D. in the manner provided herein.

This warranty shall be limited to the duration and the conditions set forth below. All warranty durations are calculated from the original date of purchase.

1. *Dedicated-Use Systems Products-* 10 year warranty on dedicated bladder pumps equipped with Q.E.D. inlet screens, and purge pumps used in periodic, non continuous groundwater sampling (up to 52 sampling events per year.) All other components, equipment and accessories are warranted for one year.

2. *Portable-Use Systems-* Controllers and water level meters are warranted for one year. Hose reels, Pumps and Caps are warranted for ninety (90) days. Tubing and Purge Mizers are covered by a ninety (90) day material and work-manship warranty. There will be no warranty for application on tubing and Purge Mizers when used as part of a Portable System.

3. Separately sold parts and Spare Parts Kits- Separately sold parts and spare parts kits are warranted for ninety (90) days. Repairs performed by Q.E.D. are warranted for ninety (90) days from date of repair or for the full term of the original warranty, whichever is longer.

Buyers' exclusive remedy for breach of said warranty shall be as follows: if. and only if, Q.E.D. is notified in writing within applicable warranty period of the existence of any such defect in the said products, and Q.E.D. upon examination of any such defects, shall find the same to be within the term of and covered by the warranty running from Q.E.D. to Buyer, Q.E.D. will, at its option, as soon as reasonably possible, replace or repair any such product, without charge to Buyer. If Q.E.D. for any reason, cannot repair a product covered hereby within four (4) weeks after receipt of the original Purchaser's/Buver's notification of a warranty claim, then Q.E.D.'s sole responsibility shall be, at its option, either to replace the defective product with a comparable new unit at no charge to the Buyer, or to refund the full purchase price. In no event shall such allegedly defective products be returned to Q.E.D. without its consent, and Q.E.D.'s obligations of repair, replacement or refund are conditioned upon the Buyer's return of the defective product to Q.E.D. IN NO EVENT SHALL QED ENVIRONMENTAL SYTEMS BE LIABLE FOR CONSEQUENTIAL DAMAGES OR INCIDENTAL DAMAGES FOR BREACH OF SAID WARRANTY.

The foregoing warranty does not apply to major sub-assemblies and other equipment, accessories and parts manufactured by others, and such other parts, accessories, and equipment are subject only to the warranties, if any, supplied by the respective manufacturers. Q.E.D. makes no warranty concerning products or accessories not manufactured by Q.E.D. In the event of failure of any such product accessory, Q.E.D. will give reasonable assistance to the Buyer in obtaining from the respective manufacturer's own warranty.

Well Wizard[®] System Warranty

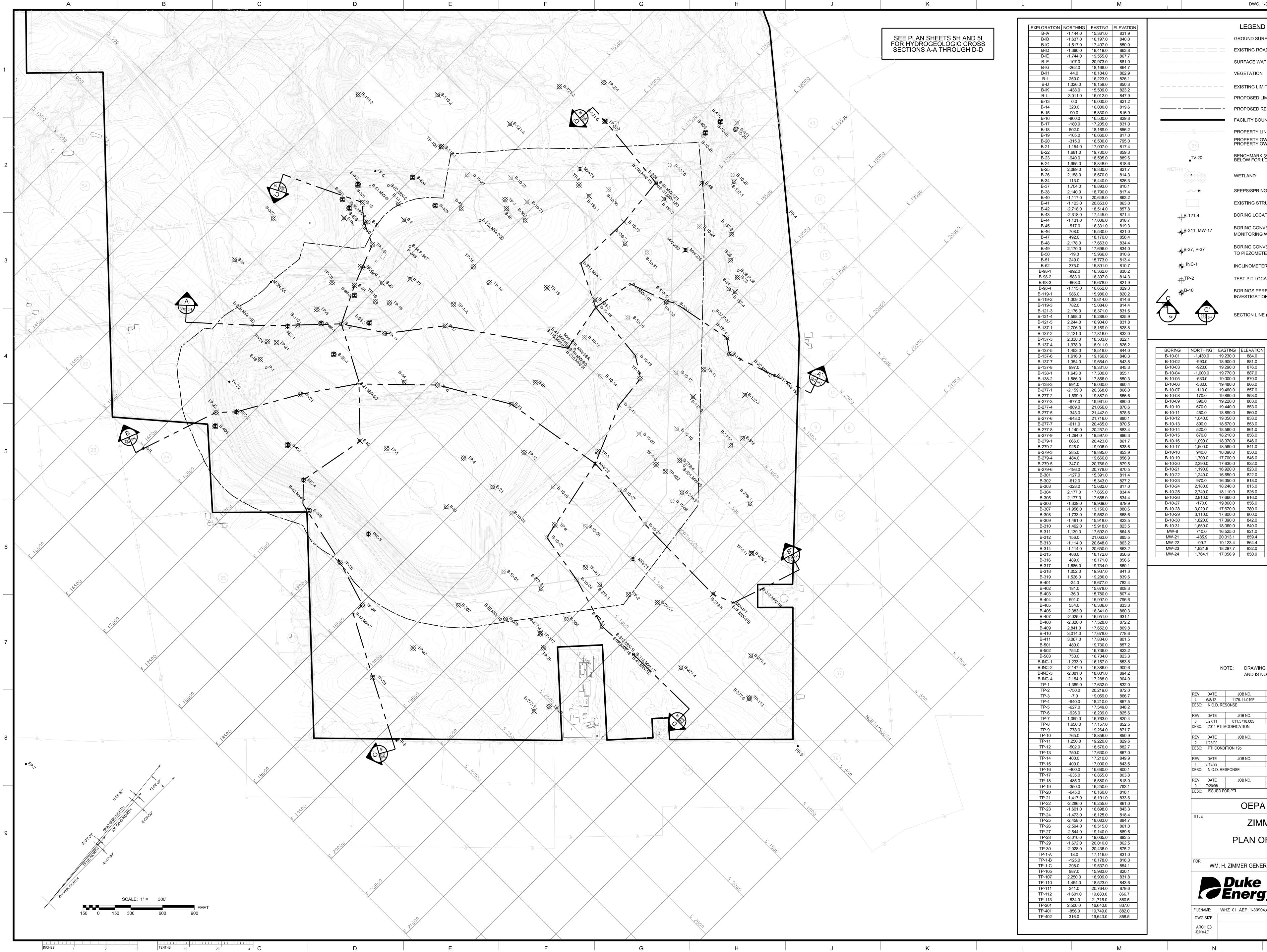
THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED OR STATUTORY (INCLDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE), WHICH OTHER WARRANTIES ARE EXPRESSLY EX-CLUDED HEREBY, and of any other obligations or liabilities on the part of Q.E.D., neither assumes nor authorizes any person to assume for it any other obligation or liability in connection with said products, materials and/or workmanship.

It is understood and agreed that Q.E.D. shall in no event be liable for incidental or consequential damages resulting from its breach of any of the terms of this agreement, nor for special damages, nor for improper selection of any product described or referred to for a particular application.

This warranty will be void in the event of unauthorized disassembly of component assemblies. Defects in any equipment that result from abuse, operation in any manner outside the recommended procedures, use and applications other than for intended use, or exposure to chemical or physical environment beyond the designated limits of materials and construction will also void this warranty. Q.E.D. shall be released from all obligations under all warranties if any product covered hereby is repaired or modified by persons other than Q.E.D.'s service personnel unless such repair by others is made with the written consent of Q.E.D.

If any product covered hereby is actually defective within the terms of this warranty, Purchaser must contact Q.E.D. for determination of warranty coverage. If the return of a component is determined to be necessary, Q.E.D. will authorize the return of the component, at owner's expense. If the product proves not to be defective within the terms of this warranty, then all costs and expenses in connection with the processing of the Purchaser's claim and all costs for repair, parts and labor as authorized by owner hereunder shall be borne by the purchaser.

RESPONSIBILITY OF THE PURCHASER


Q.E.D. to:

The original Purchaser's sole responsibility in the instance of a warranty claim shall be to notify Q.E.D. of the defect, malfunction, or other manner in which the terms of this warranty are believed to be violated. You may secure performance of obligations hereunder by contacting the Customer Service Department of Q.E.D. and:

- Identifying the product involved (by model or serial number or other sufficient description that will allow Q.E.D. to determine which product is defective).
- 2. Specifying where, when, and from whom the product was purchased.
- Describing the nature of the defect or malfunction covered by this warranty.
- 4. Sending the malfunctioning component, after authorization by

QED ENVIRONMENTAL SYSTEMS P.O. Box 3726

Ann Arbor, MI 48106-3726 USA

			DWG. 1-	3090)4		REV. 4		
			LEGEND						
		GI	ROUND SUR	FAC	E CONTOURS				
		E>	(ISTING ROA	DS					
	SURFACE WATER								
		VE	EGETATION						1
		— — Е>	(ISTING LIMI	TS C	DF RESIDUAL WASTE				
		PF	ROPOSED LI	міте	S OF RESIDUAL WASTE				
		— – PF	ROPOSED RI	ESIC	UAL WASTE - 300' BUFFER	ZON	E		
		EA	CILITY BOU		RY				
		PF		VNE	R NUMBER (REFER TO				
	(23)		ROPERTY OV						
	_TV-20	BE BE	ENCHMARK (ELOW FOR L	SEE OCA	BENCHMARK TABLE TIONS OF BENCHMARKS)				2
F-14 -		W	ETLAND						
	\sim	SE	EPS/SPRIN	GS					
EXISTING STRUCTURE									
E	3-121-4	BC	ORING LOCA	TIOI	٧				
- \$ E	3-311, MW-17		DRING CONV		ED TO GROUNDWATER				
_ ∮ B-37, P-37			ORING CONV O PIEZOMETI		ED				
			CLINOMETE	R LC	OCATION				3
	TP-2	TE	TEST PIT LOCATION						
O	B-10		ORINGS PER VESTIGATIO		MED FOR GEOTECHNICAL				
	C'								
Γ	3B2 3B3 5H	F SE	ECTION LINE	(HY	DROGEOLOGIC CROSS-SE	СТЮ	INS)		
								J	
NG	NORTHING	EASTING	ELEVATION						
01 02	-1,430.0 -990.0	19,230.0 18,900.0	884.0 881.0						4
02	-920.0	19,290.0	876.0						
04	-1,000.0	19,770.0	887.0						
05 06	-530.0 -580.0	19,000.0 19,480.0	870.0 866.0						
07	-110.0	19,460.0	857.0						
08	170.0	19,890.0	853.0						
09	390.0	19,220.0	863.0						
10	670.0	19,440.0	853.0						
11 12	450.0 1,040.0	18,890.0 19,050.0	860.0 838.0						
13	890.0	18,670.0	853.0						
14	520.0	18,580.0	861.0						
15	670.0	18,210.0	856.0						
16	1,090.0	18,370.0	846.0						
17 18	1,500.0 940.0	18,590.0 18,090.0	841.0 850.0						5
10	940.0	17,090.0	850.0 846.0						

020.0	,=	0.0.0
-1,000.0	19,770.0	887.0
-530.0	19,000.0	870.0
-580.0	19,480.0	866.0
-110.0	19,460.0	857.0
170.0	19,890.0	853.0
390.0	19,220.0	863.0
670.0	19,440.0	853.0
450.0	18,890.0	860.0
1,040.0	19,050.0	838.0
890.0	18,670.0	853.0
520.0	18,580.0	861.0
670.0	18,210.0	856.0
1,090.0	18,370.0	846.0
1,500.0	18,590.0	841.0
940.0	18,090.0	850.0
1,700.0	17,700.0	846.0
2,390.0	17,630.0	832.0
1,190.0	16,920.0	823.0
1,240.0	16,650.0	822.0
970.0	16,350.0	818.0
2,180.0	18,240.0	815.0
2,740.0	18,110.0	826.0
2,810.0	17,660.0	816.0
-170.0	19,860.0	856.0
3,020.0	17,670.0	780.0
3,110.0	17,800.0	800.0
1,820.0	17,390.0	842.0
1,650.0	18,060.0	840.0
710.0	16,525.0	821.0
-485.9	20,013.1	859.4
-99.7	19,123.4	864.4
1,921.9	18,297.7	832.0

DESC: 2011 PTI MODIFICATION

REV DATE JOB NO.

REV DATE JOB NO.

DESC: PTI CONDITION 19b

3/18/99 DESC: N.O.D. RESPONSE

0 7/20/98 DESC: ISSUED FOR PTI

TITLE

NOTE: DRAWING IS INCLUDED FOR REFERENCE ONLY AND IS NOT PART OF THE PERMIT DOCUMENTS

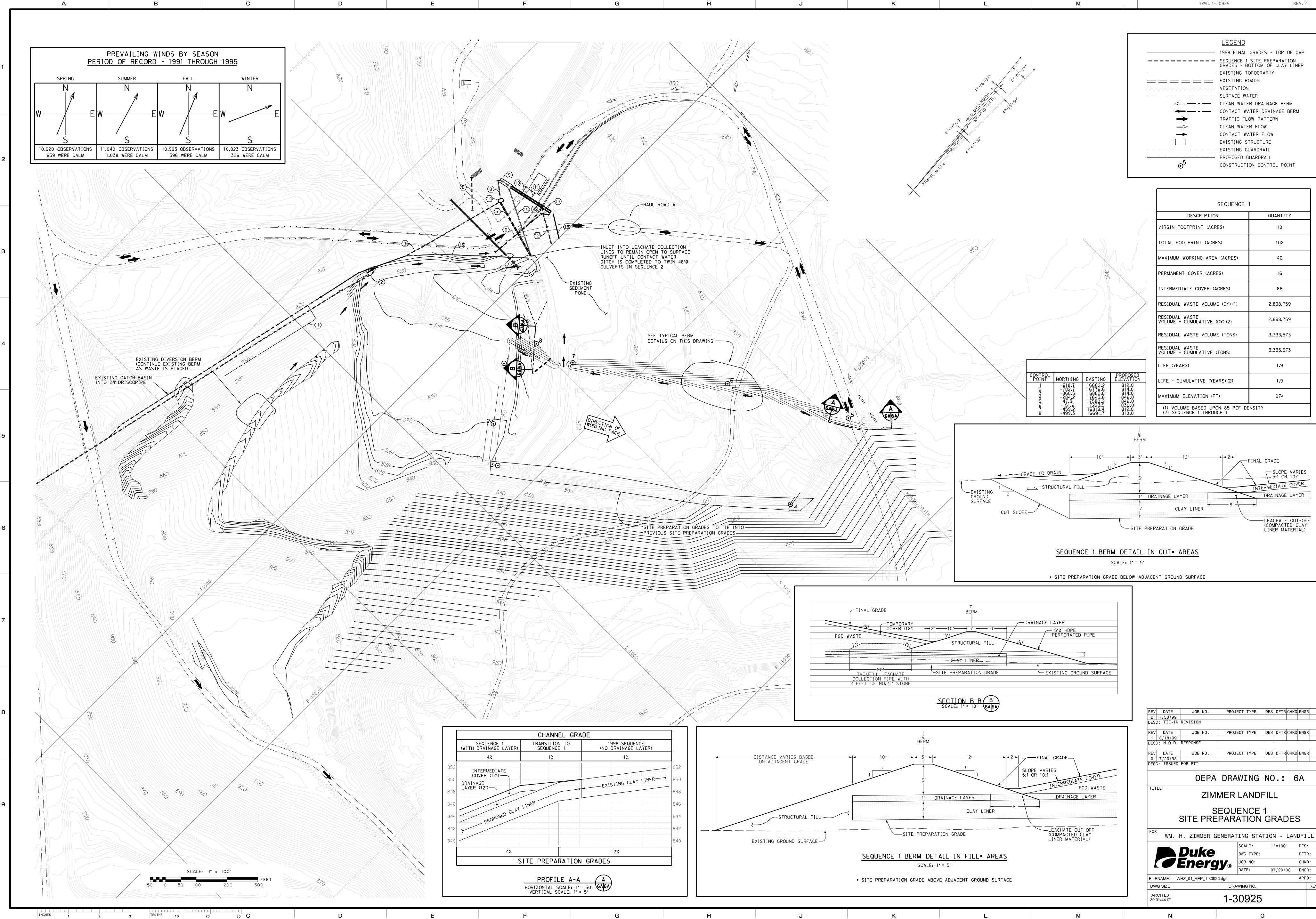
REVDATEJOB NO.PROJECT TYPEDESDFTRCHKDENGRAPPD46/8/121176-11-019FLANDFILLCKHEDVCKHSJLSJL DESC: N.O.D. RESONSE PROJECT TYPE DES DFTR CHKD ENGR APPD
 REV
 DATE
 JOB NO.

 3
 5/27/11
 011.5718.005
 LANDFILL CKH EDV CKH SJL

PROJECT TYPE

PROJECT TYPE

PROJECT TYPE

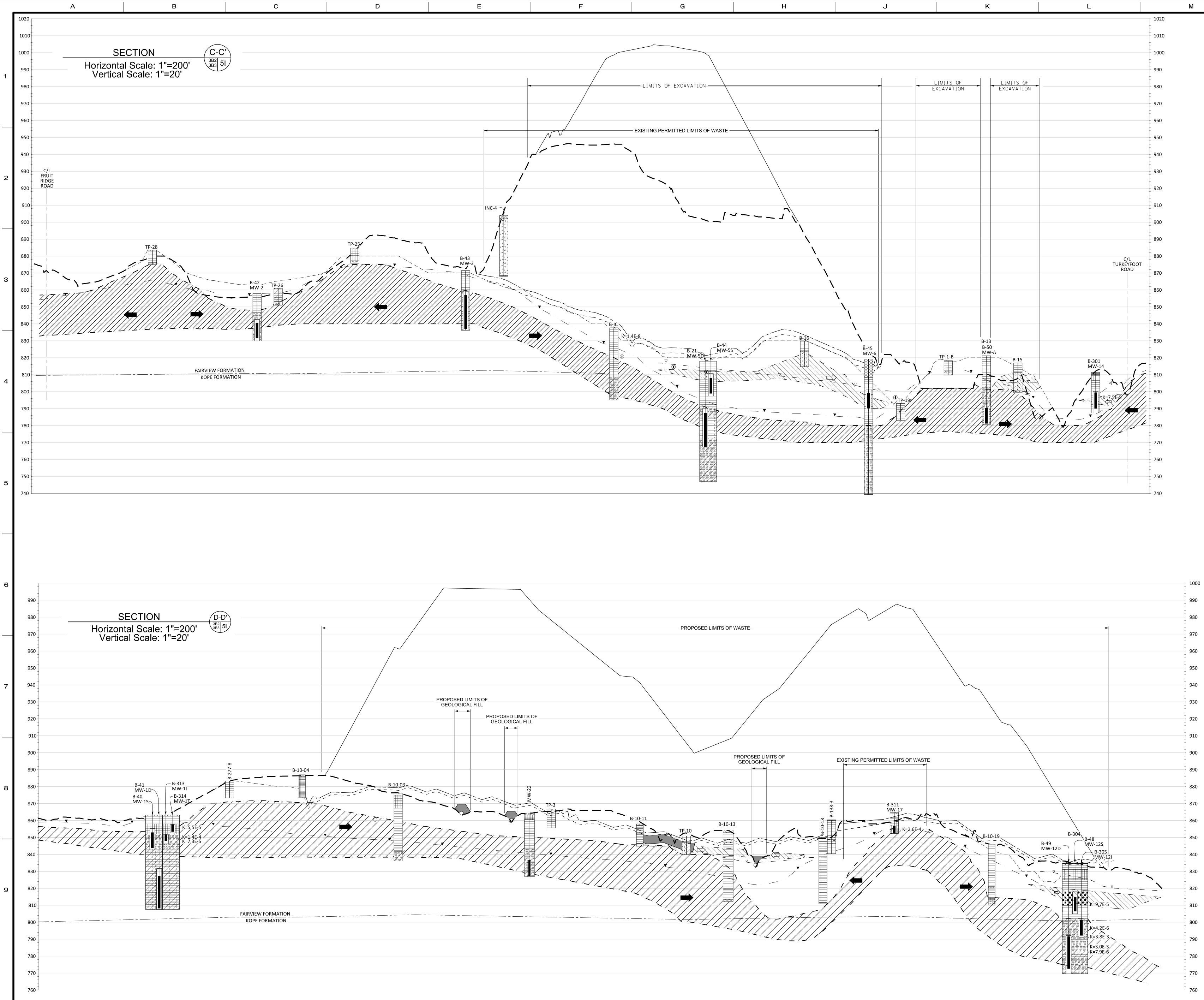

DES DFTR CHKD ENGR APPD

DES DFTR CHKD ENGR APPD

DES DFTR CHKD ENGR APPD

OEPA DRAWING NO.: 3B1 ZIMMER LANDFILL

PLAN OF EXPLORATIONS WM. H. ZIMMER GENERATING STATION - LANDFILL SCALE: 1"=200' DES: JPL **Duke** DWG TYPE: DFTR: JOB NO: DATE: CHKD: CKH 07/20/98 ENGR: SJL APPD: FILENAME: WHZ_01_AEP_1-30904.dgn DWG SIZE DRAWING NO. REVISION ARCH E3 1-30904 30.0"x44.0"



	SEQUENCE 1 (WITH DRAINAGE LAYER)	TRANSITION TO SEQUENCE 1	1998 SEQUENCE (NO DRAINAGE LAYER)		
	4%	1%	1%		ŀ
852	INTERMEDIATE			852	
850	COVER (12")		EXISTING CLAY LINER	850	
848	LAYER (12")			848	
846	PROPOSED CLAY	LINER		846	
844	PROPOSED CLA			844	
842	2			842	
840				840	
	4%		2%		
		PROFILE A-A HORIZONTAL SCALE: 1" = VERTICAL SCALE: 1" =			

									۰ ۲
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	CHKD	ENGR	APPD	
2 7/30/9								SJL	
DESC: TIE-	IN REVISION								
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	CHKD	ENGR	APPD	
1 3/18/9	9 D. RESPONSE							SJL	
					1				
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	CHKD	ENGR	APPD SJL	
	ED FOR PTI							30 L	
	OEPA	A DRA	WING	NO	- :	6	A		
TITLE									
	ZIM	1MER	LAND	FILI	_				
									9
SEQUENCE 1									
	SITE PRE	EPAR	ATION	GF	RAE	DES	3		
FOR WM	H. ZIMMER	GENERA	FING STA	TION	1 -	LANI	DFIL	L	
	N. _!		SCALE:	1'	=100	I	DES:	JLP	
	Duke Energ		DWG TYPE:				DFTR:		
	Enera	JV-	JOB NO:				CHKD:	SJL	
			DATE:	07	/20/	98	ENGR:	SJL	
FILENAME:	WHZ_01_AEP_1-309)25.dgn					APPD:		
DWG SIZE		DRA	WING NO.				F	REVISION	
ARCH E3 30.0"x44.0"		1-3	30925)				2	
N				0			l		P

SEQUENCE 1						
DESCRIPTION	QUANTITY					
VIRGIN FOOTPRINT (ACRES)	10					
TOTAL FOOTPRINT (ACRES)	102					
MAXIMUM WORKING AREA (ACRES)	46					
PERMANENT COVER (ACRES)	16					
INTERMEDIATE COVER (ACRES)	86					
RESIDUAL WASTE VOLUME (CY)(1)	2,898,759					
RESIDUAL WASTE VOLUME - CUMULATIVE (CY)(2)	2,898,759					
RESIDUAL WASTE VOLUME (TONS)	3,333,573					
RESIDUAL WASTE VOLUME - CUMULATIVE (TONS)	3,333,573					
LIFE (YEARS)	1.9					
LIFE - CUMULATIVE (YEARS)(2)	1.9					
MAXIMUM ELEVATION (FT)	974					
(1) VOLUME BASED UPON 85 PCF DENSITY						

D

E F G H

J K L M

REV DATE 6 6/8/12 DESC: N.O.D.	JOB NO.	PRO.I	ECT TYPE	DES	DFTR	СНКЛ	ENGR	APPD
	1176-11-019F		NDFILL	CKH	NWB			SJL
	RESPONSE							
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	СНКД	ENGR	APPD
5 5/27/11	011.5718.005		NDFILL	СКН	EDV	СКН		SJL
	TI MODIFICATION							
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	СНКД	ENGR	APPD
4 4/9/03								SJL
DESC: PERMIT	MODIFICATIONS							
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	СНКД	ENGR	APPD
3 3/14/03	-							SJL
DESC: PERMIT	MODIFICATIONS	_						
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	CHKD	ENGR	APPD
2 1/28/00								SJL
DESC: PTI CO	NDITION 19b							
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	CHKD	ENGR	APPD
1 3/18/99								SJL
DESC: N.O.D.	RESPONSE							
REV DATE	JOB NO.	PROJ	ECT TYPE	DES	DFTR	СНКД	ENGR	APPD
0 7/20/98								SJL
DESC: ISSUED	FOR PTI							
						_	-	
	UEPA	DRA	WING	NO	• •	5	L	
TITLE								
	ZIMME	ER FO	3D LAI	NDF	ILL	_		
						_		
HYD	ROGEOL	OGIC	CRO	SS			ION	IS
HYD	ROGEOL		CRO	SS (SE	СТ	ION	IS
HYD	ROGEOL SECTIO	OGIC DNS (CRO C-C' Al	SS (ND	SE	СТ	ION	IS
FOR	SECTIO	DNS (C-C' A	ND	SE D-[CT D'		
FOR	ROGEOL SECTIO	DNS (C-C'A	ND	SE D-[CT D'	DFIL	L
FOR WM.	SECTIO	DNS (C-C'A		SE D-[CT D'		
FOR WM.	SECTIO	DNS (C-C'A		SE D-[CT D'	DFIL	L RJK
FOR WM.	SECTIO	DNS (C-C'A		SE D-[CT D'	DFIL DES:	L RJK
FOR WM.	SECTIO	DNS (C-C'A		SE D-[CT D'	DFIL DES: DFTR:	L RJK PHA
FOR WM.	SECTIO	DNS (ENERAT	C-C'A		SE D-I	CT D'	DFIL DES: DFTR: CHKD:	L RJK PHA SJL
FOR WM.	SECTION H. ZIMMER G Duke Energ	DNS (ENERAT IY ® 4.dgn	C-C'A		SE D-I	CT D'	DFIL DES: DFTR: CHKD: ENGR: APPD:	L RJK PHA SJL
FOR WM.	SECTION H. ZIMMER G Duke Energ	ENERAT	C-C'A ING STA SCALE: DWG TYPE: JOB NO: DATE:		SE D-I	CT D'	DFIL DES: DFTR: CHKD: ENGR: APPD:	L RJK PHA SJL
FOR WM.	SECTION H. ZIMMER G Duke Energ	ENERAT	C-C'A		SE D-I	CT D'	DFIL DES: DFTR: CHKD: ENGR: APPD:	L RJK PHA SJL
FOR WM. FILENAME: W DWG SIZE ARCH E3	SECTION H. ZIMMER G Duke Energ	ENERAT	C-C'A ING STA SCALE: DWG TYPE: JOB NO: DATE:		SE D-I	CT D'	DFIL DES: DFTR: CHKD: ENGR: APPD:	L RJK PHA SJL

			·		
			—		
		7/	17	/7	
		_/	/ _	/	
	<u> </u>			$\overline{\tau}$	
)))	$\langle \rangle \rangle$	$\langle \rangle \rangle$	$\langle \rangle \rangle$	
	$ \rightarrow $			~ ~ ~	
		_ 7	7	—	
		_ 7	-	· · <u> </u>	
			N		
			I		
SCREEN	IED	~ г	\mathbb{H}		
INTERV	AL	\mathbf{A}			

<u>LEGE</u>	<u>ND</u>
	COHESIVE FILL
× 1 × × × × × × × × × × × × × × × × × ×	RESIDUAL WASTE
	TOPSOIL
	USCS LEAN CLAY
	USCS FAT CLAY
	SILT, SAND, OR GRAVEL
	BOULDERS/COBBLES
	SHALE
	INTERBEDDED SHALE AND LIMESTONE
	LIMESTONE
	INTERBEDDED LIMESTONE AND SHALE
	GEOLOGIC FILL
•	EXISTING UNDERDRAIN
0	UNDERDRAIN COLLECTOR PIPE, PERFORATED
К	HYDRAULIC CONDUCTIVITY IN CM/SEC
	PROPOSED FINAL GRADE
	EXISTING GROUND SURFACE (2010 YEAR END CONTOURS)
	PRECONSTRUCTION GROUND SURFACE
	TOP OF RECOMPACTED SOIL LINER
	BOTTOM OF RECOMPACTED SOIL LINER
	FAIRVIEW-KOPE CONTACT
777	UPPERMOST AQUIFER - NOTE: UPPER SURFACE OF AQUIFER IS BEDROCK SURFACE
	SIGNIFICANT ZONE OF SATURATION
▽,, , ,	STATIC LEVEL OF SIGNIFICANT ZONE OF SATURATION (4-30-10)
▼	STATIC LEVEL OF UPPERMOST AQUIFER (4-30-10)
➡	GROUNDWATER FLOW DIRECTION IN UPPERMOST AQUIFER
\rightarrow	GROUNDWATER FLOW DIRECTION IN SIGNIFICATION ZONE OF SATURATION

MONITORING WELL

FILTER

DWG.1-30924	REV.6

APPENDIX C6 – STRUCTURAL STABILITY ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the Coal Pile Runoff Pond is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the Coal Pile Runoff Pond were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The Coal Pile Runoff Pond is a ring dike structure and does not have abutments.

The foundation consists of medium stiff to hard clay soil, underlain by loose to very dense sand, which indicates stable foundations. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the Coal Pile Runoff Pond was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the Coal Pile Runoff Pond. No evidence of significant areas of erosion or wave action were observed and slopes were covered in vegetation. The Zimmer Power Station regularly maintains the slopes, including repairing observed surface erosion and addressing areas of poor vegetation growth, as required. Due to the characteristics of the outfall structure for the

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of very stiff to hard clay material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016); therefore, the original design and construction of the Coal Pile Runoff Pond included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the interior and exterior slopes is adequate as no substantial bare or overgrown areas were observed. Therefore, the original design and construction of the Coal Pile Runoff Pond included adequate vegetation of the dikes and surrounding areas. Adequate operational and maintenance practices are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The spillway was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, hydrologic and hydraulic analyses were completed to evaluate the capacity of the spillway relative to inflow estimated for the 1,000-year flood event for the significant hazard potential Coal Pile Runoff Pond. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).

The spillway consists of two, high-density polyethylene (HDPE) pipes, which is a non-erodible material that is designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the spillway can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). Any issues with the spillway are repaired and debris or other obstructions are removed from the spillway during operations and maintenance, as appropriate and as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(v).

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

The stability and structural integrity of the hydraulic structure penetrating the dike of the Coal Pile Runoff Pond, which includes two HDPE pipe conduits, was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. No other hydraulic structures are known to pass through the dike of or underlie the base of the Coal Pile Runoff Pond.

AECOM's field observations found the HDPE pipes to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris that may negatively affect the operation of the hydraulic structure. Operations and maintenance practices are in place to remove debris or other obstructions from the hydraulic structures, and address any deficiencies, as evidenced by conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the hydraulic structures. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(vi).

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the Coal Pile Runoff Pond was evaluated by comparing the location of the Coal Pile Runoff Pond relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the Coal Pile Runoff Pond. No other downstream water bodies such as rivers, streams, or lakes are adjacent to the Coal Pile Runoff Pond. Several adjacent non-CCR surface impoundments are present, but they are not a river, stream, or lake.

A sudden drawdown slope stability analysis was performed for a cross section adjacent to the Ohio River considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to empty pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the Coal Pile Runoff Pond meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTIR A MODEER SR. Printed Name 10/13/10 Date Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment, as defined in 40 CFR 257.53. Under 40 CFR §257.73(b) structural stability assessments (§257.73(d)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to the structural stability assessment requirements under §257.73(d).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the D Basin is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the D Basin were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The D Basin is a ring dike structure and does not have abutments.

The foundation consists of soft to stiff alluvial soil overlying medium dense to very dense alluvial soil. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016). Additional slope stability analyses were performed to evaluate the effects of cyclic softening in the foundation, and were found to satisfy the criteria in §257.73(e)(1)(iv) applicable to dikes. A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the D Basin was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the D Basin meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the D Basin. No evidence of significant areas of erosion or wave action were observed. Under normal operating conditions there is no free water present within the D Basin. The interior slopes are protected vegetation and a bottom ash protection layer. The exterior slopes are protected with vegetation. The bottom ash protection layer on the interior slopes isolates

the embankment soils from surface erosion, wave action, and acts as a free-draining material that is not susceptible to the adverse effects of sudden drawdown. Therefore, the D Basin meets the requirements in §257.73(d)(1)(ii).

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of medium dense to very dense material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016); therefore, the original design and construction of the D Basin included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the exterior slopes, and vegetation where present on the interior slopes, is adequate as no substantial bare or overgrown areas were observed. Where vegetation is not present on the interior slopes, the bottom ash protection layer is used as an alternate form of slope protection, which is adequate as significant areas of erosion or wave action were not observed. Therefore, the original design and construction of the D Basin included adequate vegetation of the dikes and surrounding areas. Adequate information about operations and maintenance are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The 257.73(d)(1)(v)(A) requirements are not applicable to the D Basin at the Zimmer Power Station because a spillway is not present. However, the 257.73(d)(1)(v)(B) requirement was evaluated to determine if the D Basin meets the requirements without a spillway system present, as discussed below.

The ability of the D Basin to adequately manage flow without a spillway system was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the D Basin can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for D Basin at Zimmer Power Station* (October 2016). Therefore, the D Basin meets the requirements in §257.73(d)(1)(v)(B), even though a spillway system is not present.

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

Based on an evaluation of design drawings, information about operations and maintenance, and conditions observed in the field by AECOM, no hydraulic structures are present that underlie the base or pass through the dike of the D Basin. Therefore, the §257.73(d)(1)(vi) requirements are not applicable to the D Basin.

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the D Basin was evaluated by comparing the location of the D Basin relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the D Basin. No other downstream water bodies are adjacent to the D Basin. The adjacent C and B Basins do not retain a pool that inundates the downstream slope of the D Basin during normal conditions.

A sudden drawdown slope stability analysis was performed at a cross-section considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both

sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to low pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the D Basin meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTOR A MODELER SR. Printed Name

APPENDIX C7 – SAFETY FACTOR ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Coal Pile Runoff Pond. The exploration consisted of hollow-stem auger borings and laboratory program including strength and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Coal Pile Runoff Pond consist of very stiff to hard clay embankment fill underlain by medium stiff to hard alluvial clay. The alluvial clay layer is underlain by a layer of medium dense to very dense sand and gravel extending to bedrock. Phreatic water is within the foundation soils of the Coal Pile Runoff Pond.

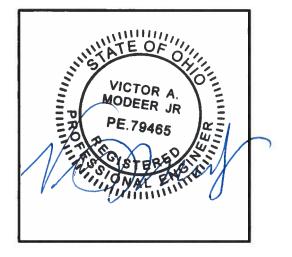
Three (3) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the Coal Pile Runoff Pond dikes. As a result, this loading condition is not applicable to the Coal Pile Runoff Pond.

Results of the Initial Safety Factor Assessments, for the critical cross-section for each loading condition (i.e. the lowest calculated factor of safety out of the cross sections analyzed for each condition), are listed in **Table 1**.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	2.28
Maximum Surcharge Pool Loading	(ii)	1.40	2.28
Seismic	(iii)	1.00	1.60
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments


Based on this evaluation, the Coal Pile Runoff Pond meets the requirements in §257.73(e)(1).

3 **Certification Statement**

CCR Unit: Zimmer Power Station: Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 12, 2016 meets the requirements of 40 CFR §257.73(e).

VICTOR A MODEER SR. Printed Name Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment as defined by 40 CFR 257.53. Under 40 CFR §257.73(b), a safety factor assessment (§257.73(e)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to safety factor assessment requirements under §257.73(e).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the D Basin. The exploration consisted of hollow-stem auger borings and laboratory program including strength, hydraulic conductivity, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the D Basin consist of medium dense to dense sand overlying soft to stiff alluvial clay, which in turn overlies medium dense to very dense sand and gravel. Phreatic water is within the foundation of the D Basin.

A critical cross section was analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross section was located at the maximum embankment height for the D Basin. Due to the relatively short height of the D Basin embankments and uniform slope orientations, subsurface stratigraphy, and phreatic conditions, a cross section at the maximum embankment height is sufficient to represent the critical cross section. The cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

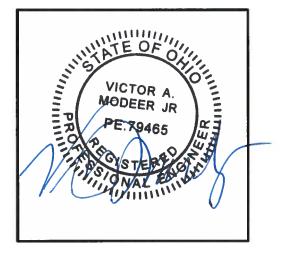
The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the D Basin dikes. As a result, this loading condition is not applicable to the D Basin.

Results of the Initial Safety Factor Assessments are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	3.88
Maximum Surcharge Pool Loading	(ii)	1.40	2.63
Seismic	(iii)	1.00	1.79
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the D Basin meets the requirements in §257.73(e)(1).


3 **Certification Statement**

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 13, 2016 meets the requirements of 40 CFR §257.73(e).

VICTIR A MODEER SR. Printed Name

Date

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 O 816-333-9400 F 816-333-3690 www.burnsmcd.com